Author
Listed:
- Gregor Tamati Haywood
(Department of Cybersecurity and Computing, Abertay University, Dundee DD1 1HG, UK
These authors contributed equally to this work.)
- Saleem Noel Bhatti
(School of Computer Science, University of St Andrews, St Andrews KY16 9AJ, UK
These authors contributed equally to this work.)
Abstract
The Internet Protocol (IP) uses numerical address values carried in IP packets at the network layer to allow correct forwarding of packets between source and destination. Those address values must be kept visible in all parts of the network. By definition, those addresses must carry enough information to identify the source and destination for the communication. This means that successive flows of IP packets can be correlated —it is possible for an observer of the flows to easily link them to an individual source and so, potentially, to an individual user. To alleviate this privacy concern, it is desirable to have ephemeral address values—values that have a limited lifespan and so make flow correlation more difficult for an attacker. However, the IP address is also used in the end-to-end communication state for transport layer flows so must remain consistent to allow correct operation at the transport layer. We present a solution to this tension in requirements by the use of ephemeral Node Identifier (eNID) values in IP packets as part of the address value. We have implemented our approach as an extension to IPv6 in the FreeBSD14 operating system kernel. We have evaluated the implementation with existing applications over both a testbed network in a controlled environment, as well as with global IPv6 network connectivity. Our results show that eNIDs work with existing applications and over existing IPv6 networks. Our analyses shows that using eNIDs creates a disruption to the correlation of flows and so effectively perturbs linkability. As our approach is a network layer (layer 3) mechanism, it is usable by any transport layer (layer 4) protocol, improving privacy for all applications and all users.
Suggested Citation
Gregor Tamati Haywood & Saleem Noel Bhatti, 2025.
"Ephemeral Node Identifiers for Enhanced Flow Privacy,"
Future Internet, MDPI, vol. 17(5), pages 1-27, April.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:5:p:196-:d:1644925
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:5:p:196-:d:1644925. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.