Author
Listed:
- Agorakis Bompotas
(Department of Computer Engineering and Informatics, School of Engineering, University of Patras, 26504 Rio, Greece)
- Nikitas-Rigas Kalogeropoulos
(Department of Computer Engineering and Informatics, School of Engineering, University of Patras, 26504 Rio, Greece)
- Christos Makris
(Department of Computer Engineering and Informatics, School of Engineering, University of Patras, 26504 Rio, Greece)
Abstract
The high costs of acquiring and maintaining high-performance computing (HPC) resources pose significant barriers for medium-sized enterprises and educational institutions, often forcing them to rely on expensive cloud-based solutions with recurring costs. This paper introduces CommC, a multi-purpose commodity hardware cluster designed to reduce operational expenses and extend hardware lifespan by repurposing underutilized computing resources. By integrating virtualization (KVM and Proxmox) and containerization (Kubernetes and Docker), CommC creates a scalable, secure, and cost-efficient computing environment. The proposed system enables seamless resource sharing, ensuring high availability and fault tolerance for both containerized and virtualized workloads. To demonstrate its versatility, we deploy big data engines like Apache Spark alongside traditional web services, showcasing CommC’s ability to support diverse workloads efficiently. Our cost analysis reveals that CommC reduces computing expenses by up to 77.93% compared to cloud-based alternatives while also mitigating e-waste accumulation by extending the lifespan of existing hardware. This significantly improves environmental sustainability compared to cloud providers, where frequent hardware turnover contributes to rising carbon emissions. This research contributes to the fields of cloud computing, resource management, and sustainable IT infrastructure by providing a replicable, adaptable, and financially viable alternative to traditional cloud-based solutions. Future work will focus on automating resource allocation, enhancing real-time monitoring, and integrating advanced security mechanisms to further optimize performance and usability.
Suggested Citation
Agorakis Bompotas & Nikitas-Rigas Kalogeropoulos & Christos Makris, 2025.
"CommC: A Multi-Purpose COMModity Hardware Cluster,"
Future Internet, MDPI, vol. 17(3), pages 1-20, March.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:3:p:121-:d:1609618
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:3:p:121-:d:1609618. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.