Author
Listed:
- Abbirah Ahmed
(Department of Electronic and Computer Engineering, University of Limerick, V94 TP9X Limerick, Ireland)
- Martin J. Hayes
(Department of Electronic and Computer Engineering, University of Limerick, V94 TP9X Limerick, Ireland)
- Arash Joorabchi
(Department of Electronic and Computer Engineering, University of Limerick, V94 TP9X Limerick, Ireland)
Abstract
In higher education, institutional quality is traditionally assessed through metrics such as academic programs, research output, educational resources, and community services. However, it is important that their activities align with student expectations, particularly in relation to interactive learning environments, learning management system interaction, curricular and co-curricular activities, accessibility, support services and other learning resources that ensure academic success and, jointly, career readiness. The growing popularity of student engagement metrics as one of the key measures to evaluate institutional efficacy is now a feature across higher education. By monitoring student engagement, institutions assess the impact of existing resources and make necessary improvements or interventions to ensure student success. This study presents a comprehensive analysis of student feedback from the StudentSurvey.ie dataset (2016–2022), which consists of approximately 275,000 student responses, focusing on student self-perception of engagement in the learning process. By using classical topic modelling techniques such as Latent Dirichlet Allocation (LDA) and Bi-term Topic Modelling (BTM), along with the advanced transformer-based BERTopic model, we identify key themes in student responses that can impact institutional strength performance metrics. BTM proved more effective than LDA for short text analysis, whereas BERTopic offered greater semantic coherence and uncovered hidden themes using deep learning embeddings. Moreover, a custom Named Entity Recognition (NER) model successfully extracted entities such as university personnel, digital tools, and educational resources, with improved performance as the training data size increased. To enable students to offer actionable feedback, suggesting areas of improvement, an n-gram and bigram network analysis was used to focus on common modifiers such as “more” and “better” and trends across student groups. This study introduces a fully automated, scalable pipeline that integrates topic modelling, NER, and n-gram analysis to interpret student feedback, offering reportable insights and supporting structured enhancements to the student learning experience.
Suggested Citation
Abbirah Ahmed & Martin J. Hayes & Arash Joorabchi, 2025.
"Assessing Student Engagement: A Machine Learning Approach to Qualitative Analysis of Institutional Effectiveness,"
Future Internet, MDPI, vol. 17(10), pages 1-37, October.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:10:p:453-:d:1762763
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:10:p:453-:d:1762763. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.