Author
Listed:
- Apostolos Angelis
(Deptartment of Informatics and Telematics, Harokopio University, 17778 Athens, Greece)
- George Kousiouris
(Deptartment of Informatics and Telematics, Harokopio University, 17778 Athens, Greece)
Abstract
Cloud-native applications have significantly advanced the development and scalability of online services through the use of microservices and modular architectures. However, achieving adaptability, resilience, and efficient performance management within cloud environments remains a key challenge. This work systematically reviews 111 publications from the last eight years on self-adaptive cloud design and operations patterns, classifying them by objectives, control scope, decision-making approach, automation level, and validation methods. Our analysis reveals that performance optimization dominates research goals, followed by cost reduction and security enhancement, with availability and reliability underexplored. Reactive feedback loops prevail, while proactive approaches—often leveraging machine learning—are increasingly applied to predictive resource provisioning and application management. Resource-oriented adaptation strategies are common, but direct application-level reconfiguration remains scarce, representing a promising research gap. We further catalog tools, platforms, and more than 30 publicly accessible datasets used in validation, and that dataset usage is fragmented without a de facto standard. Finally, we map the research findings on a generic application and system-level design for self-adaptive applications, including a proposal for a federated learning approach for SaaS application Agents. This blueprint aims to guide future work toward more intelligent, context-aware cloud automation.
Suggested Citation
Apostolos Angelis & George Kousiouris, 2025.
"An Overview on the Landscape of Self-Adaptive Cloud Design and Operation Patterns: Goals, Strategies, Tooling, Evaluation, and Dataset Perspectives,"
Future Internet, MDPI, vol. 17(10), pages 1-31, September.
Handle:
RePEc:gam:jftint:v:17:y:2025:i:10:p:434-:d:1756943
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:17:y:2025:i:10:p:434-:d:1756943. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.