IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i7p238-d1189820.html
   My bibliography  Save this article

Assisting Drivers at Stop Signs in a Connected Vehicle Environment

Author

Listed:
  • Maram Bani Younes

    (Department of Information Security and Cybersecurity, Philadelphia University, Amman 19392, Jordan)

Abstract

Road intersections are shared among several conflicted traffic flows. Stop signs are used to control competing traffic flows at road intersections safely. Then, driving rules are constructed to control the competing traffic flows at these stop sign road intersections. Vehicles must apply a complete stop with no motion in front of stop signs. First to arrive, first to go, straight before turns, and right then left are the main driving rules at stop sign intersections. Drivers must be aware of the stop sign’s existence, the architecture of the road intersection, and traffic distribution in the competing traffic flows. This is to make the best decision to pass the intersection or wait for other conflicted flows to pass according to the current situation. Due to bad weather conditions, obstacles, or existing heavy vehicles, drivers may miss capturing the stop sign. Moreover, the architecture of the road intersection and the characteristics of the competing traffic flows are not always clear to the drivers. In this work, we aim to keep the driver aware ahead of time of the existing stop signs, the architecture of the road intersection, and the traffic characteristics of the competing traffic flow at the targeted destination. Moreover, the best speed and driving behaviors are recommended to each driver. This is based on his/her position and the distribution of the existing traffic there. A driving assistance protocol is presented in this paper based on vehicular network technology. Real-time traffic characteristics are gathered and analyzed of vehicles around the intersections. Then, the best action for each vehicle is recommended accordingly. The experimental results show that the proposed driving assistant protocol successfully enhances the safety conditions around road intersections controlled by stop signs. This is by reducing the percentage of accident occurrences. Fortunately, the traffic efficiency of these road intersections is also enhanced; the accident percentage is decreased by 25% upon using the proposed protocol.

Suggested Citation

  • Maram Bani Younes, 2023. "Assisting Drivers at Stop Signs in a Connected Vehicle Environment," Future Internet, MDPI, vol. 15(7), pages 1-16, July.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:7:p:238-:d:1189820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/7/238/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/7/238/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:7:p:238-:d:1189820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.