IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v13y2021i10p262-d654802.html
   My bibliography  Save this article

A Register Access Control Scheme for SNR System to Counter CPA Attack Based on Malicious User Blacklist

Author

Listed:
  • Jia Shi

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

  • Xuewen Zeng

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

  • Yang Li

    (National Network New Media Engineering Research Center, Institute of Acoustics, Chinese Academy of Sciences, No. 21, North Fourth Ring Road, Haidian District, Beijing 100190, China
    School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, China)

Abstract

Standalone Name Resolution (SNR) is an essential component of many Information-Centric Networking (ICN) infrastructures that maps and stores the mappings of IDs and locators. The delivery of data can be realized only when the name resolution process is completed correctly. It also makes the SNR become the key target of network attackers. In this paper, our research focuses on the more covert and complex Content Pollution Attack (CPA). By continuously sending invalid content to the network at a low speed, attackers will consume a lot of the resources and time of the SNR system, resulting in a serious increase in the resolution delay of normal users and further cache pollution in ICN. It is difficult to be quickly detected because the characteristics of attack are inconspicuous. To address the challenge, a register access control scheme for an SNR system based on a malicious user blacklist query is proposed. A neighbor voting algorithm is designed to discover possible attacks in the network quickly and build a blacklist of malicious users reasonably. Users on the blacklist will be restricted from accessing the ICN network during the registration phase with the resolution system. Incentives and punishments for network users are introduced to automate responses about the potential malicious behavior reports. Our scheme is more efficient as users do not have to wait for an additional system component to perform operations. In addition, our algorithm can better solve the collusion problem in the voting process when compared with the others. We experimentally evaluate our protocol to demonstrate that the probability of successful collusion attack can be reduced to less than 0.1 when the attacker ratio is 0.5.

Suggested Citation

  • Jia Shi & Xuewen Zeng & Yang Li, 2021. "A Register Access Control Scheme for SNR System to Counter CPA Attack Based on Malicious User Blacklist," Future Internet, MDPI, vol. 13(10), pages 1-19, October.
  • Handle: RePEc:gam:jftint:v:13:y:2021:i:10:p:262-:d:654802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/13/10/262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/13/10/262/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:10:p:262-:d:654802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.