IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i3p45-d1727753.html
   My bibliography  Save this article

A Wavelet–Attention–Convolution Hybrid Deep Learning Model for Accurate Short-Term Photovoltaic Power Forecasting

Author

Listed:
  • Kaoutar Ait Chaoui

    (ASE Laboratory, National School of Applied Sciences, Ibn Tofail University, Kenitra 14000, Morocco)

  • Hassan EL Fadil

    (ASE Laboratory, National School of Applied Sciences, Ibn Tofail University, Kenitra 14000, Morocco)

  • Oumaima Choukai

    (Higher National School of Chemistry—ENSC, Ibn Tofail University, Kenitra 14000, Morocco)

  • Oumaima Ait Omar

    (ASE Laboratory, National School of Applied Sciences, Ibn Tofail University, Kenitra 14000, Morocco)

Abstract

The accurate short-term forecasting (PV) of power is crucial for grid stability control, energy trading optimization, and renewable energy integration in smart grids. However, PV generation is extremely variable and non-linear due to environmental fluctuations, which challenge the conventional forecasting models. This study proposes a hybrid deep learning architecture, Wavelet Transform–Transformer–Temporal Convolutional Network–Efficient Channel Attention Network–Gated Recurrent Unit (WT–Transformer–TCN–ECANet–GRU), to capture the overall temporal complexity of PV data through integrating signal decomposition, global attention, local convolutional features, and temporal memory. The model begins by employing the Wavelet Transform (WT) to decompose the raw PV time series into multi-frequency components, thereby enhancing feature extraction and denoising. Long-term temporal dependencies are captured in a Transformer encoder, and a Temporal Convolutional Network (TCN) detects local features. Features are then adaptively recalibrated by an Efficient Channel Attention (ECANet) module and passed to a Gated Recurrent Unit (GRU) for sequence modeling. Multiscale learning, attention-driven robust filtering, and efficient encoding of temporality are enabled with the modular pipeline. We validate the model on a real-world, high-resolution dataset of a Moroccan university building comprising 95,885 five-min PV generation records. The model yielded the lowest error metrics among benchmark architectures with an MAE of 209.36, RMSE of 616.53, and an R 2 of 0.96884, outperforming LSTM, GRU, CNN-LSTM, and other hybrid deep learning models. These results suggest improved predictive accuracy and potential applicability for real-time grid operation integration, supporting applications such as energy dispatching, reserve management, and short-term load balancing.

Suggested Citation

  • Kaoutar Ait Chaoui & Hassan EL Fadil & Oumaima Choukai & Oumaima Ait Omar, 2025. "A Wavelet–Attention–Convolution Hybrid Deep Learning Model for Accurate Short-Term Photovoltaic Power Forecasting," Forecasting, MDPI, vol. 7(3), pages 1-29, August.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:45-:d:1727753
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/3/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/3/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Xiangjie & Liu, Yuanyan & Kong, Xiaobing & Ma, Lele & Besheer, Ahmad H. & Lee, Kwang Y., 2023. "Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis," Energy, Elsevier, vol. 271(C).
    2. Zhu, Jianhua & He, Yaoyao, 2025. "A novel hybrid model based on evolving multi-quantile long and short-term memory neural network for ultra-short-term probabilistic forecasting of photovoltaic power," Applied Energy, Elsevier, vol. 377(PC).
    3. Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Xilong Lin & Yisen Niu & Zixuan Yan & Lianglin Zou & Ping Tang & Jifeng Song, 2024. "Hybrid Photovoltaic Output Forecasting Model with Temporal Convolutional Network Using Maximal Information Coefficient and White Shark Optimizer," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Yisheng & Liu, Gang & Luo, Donghua & Bavirisetti, Durga Prasad & Xiao, Gang, 2023. "Multi-timescale photovoltaic power forecasting using an improved Stacking ensemble algorithm based LSTM-Informer model," Energy, Elsevier, vol. 283(C).
    2. Zhao, Xiaoyu & Duan, Pengfei & Cao, Xiaodong & Xue, Qingwen & Zhao, Bingxu & Hu, Jinxue & Zhang, Chenyang & Yuan, Xiaoyang, 2025. "A probabilistic load forecasting method for multi-energy loads based on inflection point optimization and integrated feature screening," Energy, Elsevier, vol. 327(C).
    3. Zhiwei Liao & Wenlong Min & Chengjin Li & Bowen Wang, 2024. "Photovoltaic Power Prediction Based on Irradiation Interval Distribution and Transformer-LSTM," Energies, MDPI, vol. 17(12), pages 1-17, June.
    4. Wang, Lining & Mao, Mingxuan & Xie, Jili & Liao, Zheng & Zhang, Hao & Li, Huanxin, 2023. "Accurate solar PV power prediction interval method based on frequency-domain decomposition and LSTM model," Energy, Elsevier, vol. 262(PB).
    5. Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
    6. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    7. Yang, Mao & Jiang, Yue & Zhang, Wei & Li, Yi & Su, Xin, 2024. "Short-term interval prediction strategy of photovoltaic power based on meteorological reconstruction with spatiotemporal correlation and multi-factor interval constraints," Renewable Energy, Elsevier, vol. 237(PC).
    8. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    9. Wang, Yong & Yan, Gaowei & Xiao, Shuyi & Ren, Mifeng & Cheng, Lan & Zhu, Zhujun, 2025. "Day-ahead solar irradiance prediction based on multi-feature perspective clustering," Energy, Elsevier, vol. 320(C).
    10. Mayer, Martin János & Biró, Bence & Szücs, Botond & Aszódi, Attila, 2023. "Probabilistic modeling of future electricity systems with high renewable energy penetration using machine learning," Applied Energy, Elsevier, vol. 336(C).
    11. Wang, Hu & Mao, Lei & Zhang, Heng & Wu, Qiang, 2024. "Multi-prediction of electric load and photovoltaic solar power in grid-connected photovoltaic system using state transition method," Applied Energy, Elsevier, vol. 353(PB).
    12. Tahir, Muhammad Faizan & Yousaf, Muhammad Zain & Tzes, Anthony & El Moursi, Mohamed Shawky & El-Fouly, Tarek H.M., 2024. "Enhanced solar photovoltaic power prediction using diverse machine learning algorithms with hyperparameter optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    13. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    14. Li, Jiaqian & Rao, Congjun & Gao, Mingyun & Xiao, Xinping & Goh, Mark, 2025. "Efficient calculation of distributed photovoltaic power generation power prediction via deep learning," Renewable Energy, Elsevier, vol. 246(C).
    15. Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
    16. Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
    17. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Li, Yifan & Liu, Gang & Cao, Yisheng & Chen, Jiawei & Gang, Xiao & Tang, Jianchao, 2025. "WNPS-LSTM-Informer: A Hybrid Stacking model for medium-term photovoltaic power forecasting with ranked feature selection," Renewable Energy, Elsevier, vol. 244(C).
    19. Chen, Yunxiao & Bai, Mingliang & Zhang, Yilan & Liu, Jinfu & Yu, Daren, 2023. "Proactively selection of input variables based on information gain factors for deep learning models in short-term solar irradiance forecasting," Energy, Elsevier, vol. 284(C).
    20. Eskandari, Hosein & Imani, Maryam & Moghaddam, Mohsen Parsa, 2025. "A deep residual network integrating entropy-based wavelet packet ensemble model for short-term electrical load forecasting," Energy, Elsevier, vol. 314(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:45-:d:1727753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.