Author
Listed:
- Albin Uruqi
(Department of Computer Science, ACT College, Thessaloniki, Vasiliou Sevenidi 17, 555 35 Pilea, Greece)
- Iosif Viktoratos
(Department of Computer Science, ACT College, Thessaloniki, Vasiliou Sevenidi 17, 555 35 Pilea, Greece)
Abstract
This study explores the application of spiking neural networks (SNNs) for click-through rate (CTR) prediction in personalized online advertising systems, introducing a novel hybrid model, the Temporal Rate Spike with Attention Neural Network (TRA–SNN). By leveraging the biological plausibility and energy efficiency of SNNs, combined with attention-based mechanisms, the TRA–SNN model captures temporal dynamics and rate-based patterns to achieve performance comparable to state-of-the-art Artificial Neural Network (ANN)-based models, such as Deep & Cross Network v2 (DCN-V2) and FinalMLP. The models were trained and evaluated on the Avazu and Digix datasets, using standard metrics like AUC-ROC and accuracy. Through rigorous hyperparameter tuning and standardized preprocessing, this study ensures fair comparisons across models, highlighting SNNs’ potential for scalable, sustainable deployment in resource-constrained environments like mobile devices and large-scale ad platforms. This work is the first to apply SNNs to CTR prediction, setting a new benchmark for energy-efficient predictive modeling and opening avenues for future research in hybrid SNN–ANN architectures across domains like finance, healthcare, and autonomous systems.
Suggested Citation
Albin Uruqi & Iosif Viktoratos, 2025.
"Exploiting Spiking Neural Networks for Click-Through Rate Prediction in Personalized Online Advertising Systems,"
Forecasting, MDPI, vol. 7(3), pages 1-17, July.
Handle:
RePEc:gam:jforec:v:7:y:2025:i:3:p:38-:d:1704996
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:3:p:38-:d:1704996. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.