Author
Listed:
- Tan Gürpinar
(Department of Business Analytics & Information Systems, Quinnipiac University, Hamden, CT 06518, USA)
- Mehmet Akif Gulum
(Department of Computer Science, DePauw University, Greencastle, IN 46135, USA)
- Melanie Martinelli
(Department of Business Analytics & Information Systems, Quinnipiac University, Hamden, CT 06518, USA)
Abstract
Enterprises today face increasing threats from cyberattacks, supply chain disruptions, and systemic market risks, making the enhancement of organizational resilience through advanced risk management frameworks increasingly critical. Traditional approaches often struggle to balance data privacy, cross-organizational collaboration, and real-time adaptability. While distributed ledger technologies (DLTs) initially enabled cryptocurrencies, they have evolved into a foundational infrastructure for decentralized AI applications. This study investigates how decentralized AI techniques, particularly federated learning, can support joint risk management processes in enterprise networks. First, a comprehensive review of decentralized AI methods is conducted to identify approaches suitable for enterprise risk management. Next, expert interviews are used to contextualize these insights, highlighting practical considerations, organizational challenges, and adoption constraints. Building on the literature and expert feedback, a decentralized framework is developed to allow organizations to securely share risk-related insights while preserving data privacy and control over proprietary information. The framework is validated through a technical prototype, combining architectural design with empirical proof-of-concept experiments on federated learning benchmarks. Results demonstrate the feasibility of achieving near-centralized model accuracy under privacy constraints, while also highlighting communication and governance issues that need to be addressed in real-world deployments. The study presents a structured comparison of decentralized AI techniques and a validated concept for enhancing supply chain risk prediction, fraud detection, and operational continuity across enterprise networks.
Suggested Citation
Tan Gürpinar & Mehmet Akif Gulum & Melanie Martinelli, 2025.
"From Cryptocurrencies to Collaborative Risk Management: A Review of Decentralized AI Approaches,"
FinTech, MDPI, vol. 4(4), pages 1-20, December.
Handle:
RePEc:gam:jfinte:v:4:y:2025:i:4:p:74-:d:1816407
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:4:y:2025:i:4:p:74-:d:1816407. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.