IDEAS home Printed from https://ideas.repec.org/a/gam/jfinte/v4y2025i4p61-d1788082.html

Stock Market Volatility Forecasting: Exploring the Power of Deep Learning

Author

Listed:
  • Minh Vo

    (College of Business and Management, Metropolitan State University, St. Paul, MN 55106, USA)

Abstract

This study provides a comprehensive evaluation of five deep learning (DL) architectures—TiDE, LSTM, DeepAR, TCN, and Transformer—against the extended Heterogeneous Autoregressive (HAR) model for stock market volatility forecasting. Utilizing 22.5 years of high-frequency data from the S&P 500, DJIA, and Nasdaq indices and incorporating key macroeconomic variables (DXY, VIX, US10Y, and US1M), we assess predictive accuracy across multiple horizons from one day to one month. Our analysis yields three main findings. First, when macroeconomic variables are included, DL models consistently and significantly outperform the HAR benchmark, with TiDE excelling in one-day-ahead predictions and DeepAR dominating longer horizons. Second, in the absence of these exogenous variables, the statistical advantage of DL models over HAR often disappears, highlighting HAR’s enduring relevance in feature-constrained settings. Third, among the DL architectures, DeepAR emerges as the most robust and versatile performer, especially when leveraging macroeconomic data. These results underscore the conditional power of deep learning and provide practical guidance on model selection for financial practitioners and researchers.

Suggested Citation

  • Minh Vo, 2025. "Stock Market Volatility Forecasting: Exploring the Power of Deep Learning," FinTech, MDPI, vol. 4(4), pages 1-30, November.
  • Handle: RePEc:gam:jfinte:v:4:y:2025:i:4:p:61-:d:1788082
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2674-1032/4/4/61/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2674-1032/4/4/61/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:4:y:2025:i:4:p:61-:d:1788082. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.