IDEAS home Printed from https://ideas.repec.org/a/gam/jfinte/v4y2025i4p52-d1757737.html

Quantum Computing and Cybersecurity in Accounting and Finance in the Post-Quantum World: Challenges and Opportunities for Securing Accounting and Finance Systems

Author

Listed:
  • Huma Habib Shadan

    (Institute for Sustainable Industries & Liveable Cities (ISILC), Victoria University, Melbourne, VIC 3000, Australia)

  • Sardar M. N. Islam

    (Institute for Sustainable Industries & Liveable Cities (ISILC), Victoria University, Melbourne, VIC 3000, Australia)

Abstract

Quantum technology is significantly transforming businesses, organisations, and information systems. It will have a significant impact on accounting and finance, particularly in the context of cybersecurity. It presents both opportunities and risks in maintaining confidentiality and protecting financial data. This study aims to demonstrate the application of quantum technologies in accounting cybersecurity, utilising quantum algorithms and QKD to overcome the limitations of classical computing. The literature review emphasises the vulnerabilities of current accounting cybersecurity to quantum attacks and highlights the necessity for quantum-resistant cryptographic mechanisms. It discusses the risks related to traditional encryption methods within the context of quantum capabilities. This research enhances understanding of how quantum computing can revolutionise accounting cybersecurity by advancing quantum-resistant algorithms and implementing QKD in accounting systems. This study employs the PSALSAR systematic review methodology to ensure thoroughness and rigour. The analysis shows that quantum computing pushes encryption techniques beyond classical limits. Using quantum technologies in accounting reduces data breaches and unauthorised access. This study concludes that quantum-resistant algorithms and quantum key distribution (QKD) are crucial for securing the future of accounting and finance systems.

Suggested Citation

  • Huma Habib Shadan & Sardar M. N. Islam, 2025. "Quantum Computing and Cybersecurity in Accounting and Finance in the Post-Quantum World: Challenges and Opportunities for Securing Accounting and Finance Systems," FinTech, MDPI, vol. 4(4), pages 1-41, September.
  • Handle: RePEc:gam:jfinte:v:4:y:2025:i:4:p:52-:d:1757737
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2674-1032/4/4/52/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2674-1032/4/4/52/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Frank Arute & Kunal Arya & Ryan Babbush & Dave Bacon & Joseph C. Bardin & Rami Barends & Rupak Biswas & Sergio Boixo & Fernando G. S. L. Brandao & David A. Buell & Brian Burkett & Yu Chen & Zijun Chen, 2019. "Quantum supremacy using a programmable superconducting processor," Nature, Nature, vol. 574(7779), pages 505-510, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sultan H Almotiri, 2024. "Quantum-resilient software security: A fuzzy AHP-based assessment framework in the era of quantum computing," PLOS ONE, Public Library of Science, vol. 19(12), pages 1-25, December.
    2. Jaka Vodeb & Michele Diego & Yevhenii Vaskivskyi & Leonard Logaric & Yaroslav Gerasimenko & Viktor Kabanov & Benjamin Lipovsek & Marko Topic & Dragan Mihailovic, 2024. "Non-equilibrium quantum domain reconfiguration dynamics in a two-dimensional electronic crystal and a quantum annealer," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. Carlos Vieira & Ravishankar Ramanathan & Adán Cabello, 2025. "Test of the physical significance of Bell non-locality," Nature Communications, Nature, vol. 16(1), pages 1-7, December.
    4. Tong Liu & Shang Liu & Hekang Li & Hao Li & Kaixuan Huang & Zhongcheng Xiang & Xiaohui Song & Kai Xu & Dongning Zheng & Heng Fan, 2023. "Observation of entanglement transition of pseudo-random mixed states," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Gheorghe Taran & Eufemio Moreno-Pineda & Michael Schulze & Edgar Bonet & Mario Ruben & Wolfgang Wernsdorfer, 2023. "Direct determination of high-order transverse ligand field parameters via µSQUID-EPR in a Et4N[160GdPc2] SMM," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Sofia Priazhkina & Samuel Palmer & Pablo Martín-Ramiro & Román Orús & Samuel Mugel & Vladimir Skavysh, 2024. "Digital Payments in Firm Networks: Theory of Adoption and Quantum Algorithm," Staff Working Papers 24-17, Bank of Canada.
    7. X. L. He & Yong Lu & D. Q. Bao & Hang Xue & W. B. Jiang & Z. Wang & A. F. Roudsari & Per Delsing & J. S. Tsai & Z. R. Lin, 2023. "Fast generation of Schrödinger cat states using a Kerr-tunable superconducting resonator," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Hu, Jie-Ru & Zhang, Zuo-Yuan & Liu, Jin-Ming, 2024. "Implementation of three-qubit Deutsch-Jozsa algorithm with pendular states of polar molecules by optimal control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    9. Huang, Fangyu & Tan, Xiaoqing & Huang, Rui & Xu, Qingshan, 2022. "Variational convolutional neural networks classifiers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    10. Fernández-Villaverde, Jesús & Hull, Isaiah, 2023. "Dynamic Programming on a Quantum Annealer: Solving the RBC Model," CEPR Discussion Papers 18190, C.E.P.R. Discussion Papers.
    11. Maryam Moghimi & Herbert W. Corley, 2020. "Information Loss Due to the Data Reduction of Sample Data from Discrete Distributions," Data, MDPI, vol. 5(3), pages 1-18, September.
    12. Dylan Herman & Cody Googin & Xiaoyuan Liu & Alexey Galda & Ilya Safro & Yue Sun & Marco Pistoia & Yuri Alexeev, 2022. "A Survey of Quantum Computing for Finance," Papers 2201.02773, arXiv.org, revised Jun 2022.
    13. Martin Ringbauer & Marcel Hinsche & Thomas Feldker & Paul K. Faehrmann & Juani Bermejo-Vega & Claire L. Edmunds & Lukas Postler & Roman Stricker & Christian D. Marciniak & Michael Meth & Ivan Pogorelo, 2025. "Verifiable measurement-based quantum random sampling with trapped ions," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    14. Yulong Dong & Jonathan A. Gross & Murphy Yuezhen Niu, 2025. "Optimal low-depth quantum signal-processing phase estimation," Nature Communications, Nature, vol. 16(1), pages 1-9, December.
    15. Liang Xiang & Jiachen Chen & Zitian Zhu & Zixuan Song & Zehang Bao & Xuhao Zhu & Feitong Jin & Ke Wang & Shibo Xu & Yiren Zou & Hekang Li & Zhen Wang & Chao Song & Alexander Yue & Justine Partridge & , 2024. "Enhanced quantum state transfer by circumventing quantum chaotic behavior," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Roshani, Saeed, 2025. "Dynamic roles and temporal evolution in innovation ecosystems: A case study of quantum technologies," Technological Forecasting and Social Change, Elsevier, vol. 219(C).
    17. Shuvro Chowdhury & Navid Anjum Aadit & Andrea Grimaldi & Eleonora Raimondo & Atharva Raut & P. Aaron Lott & Johan H. Mentink & Marek M. Rams & Federico Ricci-Tersenghi & Massimo Chiappini & Luke S. Th, 2025. "Pushing the boundary of quantum advantage in hard combinatorial optimization with probabilistic computers," Nature Communications, Nature, vol. 16(1), pages 1-10, December.
    18. Takuro Matsuta & Ryo Furue, 2025. "Formulation and evaluation of ocean dynamics problems as optimization problems for quantum annealing machines," PLOS ONE, Public Library of Science, vol. 20(6), pages 1-22, June.
    19. Xiao Li & Jia-Yi Hou & Jia-Chao Wang & Guang-Wei Wang & Xiao-Dong He & Feng Zhou & Yi-Bo Wang & Min Liu & Jin Wang & Peng Xu & Ming-Sheng Zhan, 2025. "A fiber array architecture for atom quantum computing," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    20. George Gillard & Edmund Clarke & Evgeny A. Chekhovich, 2022. "Harnessing many-body spin environment for long coherence storage and high-fidelity single-shot qubit readout," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:4:y:2025:i:4:p:52-:d:1757737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.