Author
Abstract
This study addresses the critical need for accurate tourism demand (TD) forecasting in Bulgaria using economic indicators, developing robust predictive models to navigate post-pandemic market volatility. The COVID-19 pandemic exposed tourism’s vulnerability to systemic shocks, highlighting deficiencies in traditional forecasting approaches. Bulgaria’s tourism industry, characterized by strong seasonal variations and economic sensitivity, requires enhanced methodologies for strategic planning in uncertain environments. The research employs comprehensive comparative analysis of machine learning (ML) and deep machine learning (DML) methodologies. Monthly overnight stay data from Bulgaria’s National Statistical Institute (2005–2024) were integrated with COVID-19 case data, Consumer Price Index (CPI) and Bulgarian Gross Domestic Product (GDP) variables for the same period. Multiple approaches were implemented including Prophet with external regressors, Ridge regression, LightGBM, and gradient boosting models using inverse MAE weighting optimization, alongside deep learning architectures such as Bidirectional LSTM with attention mechanisms and XGBoost configurations, as each model statistical significance was estimated. Contrary to prevailing assumptions about deep learning superiority, traditional machine learning ensemble approaches demonstrated superior performance. The ensemble model combining Prophet, LightGBM, and Ridge regression achieved optimal results with MAE of 156,847 and MAPE of 14.23%, outperforming individual models by 10.2%. Deep learning alternatives, particularly Bi-LSTM architectures, exhibited significant deficiencies with negative R 2 scores, indicating fundamental limitations in capturing seasonal tourism patterns, probable data dependence and overfitting. The findings, provide tourism stakeholders and policymakers with empirically validated forecasting tools for enhanced decision-making. The ensemble approach combined with statistical significance testing offers improved accuracy for investment planning, marketing budget allocation, and operational capacity management during economic volatility. Economic indicator integration enables proactive responses to market disruptions, supporting resilient tourism planning strategies and crisis management protocols.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jfinte:v:4:y:2025:i:3:p:46-:d:1739247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.