IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i7p504-d73146.html
   My bibliography  Save this article

Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier

Author

Listed:
  • Mazda Biglari

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Hui Liu

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Ali Elkamel

    (Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada)

  • Ali Lohi

    (Department of Chemical Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada)

Abstract

Two modeling approaches, the scaling-law and CFD (Computational Fluid Dynamics) approaches, are presented in this paper. To save on experimental cost of the pilot plant, the scaling-law approach as a low-computational-cost method was adopted and a small scale column operating under ambient temperature and pressure was built. A series of laboratory tests and computer simulations were carried out to evaluate the hydrodynamic characteristics of a pilot fluidized-bed biomass gasifier. In the small scale column solids were fluidized. The pressure and other hydrodynamic properties were monitored for the validation of the scaling-law application. In addition to the scaling-law modeling method, the CFD approach was presented to simulate the gas-particle system in the small column. 2D CFD models were developed to simulate the hydrodynamic regime. The simulation results were validated with the experimental data from the small column. It was proved that the CFD model was able to accurately predict the hydrodynamics of the small column. The outcomes of this research present both the scaling law with the lower computational cost and the CFD modeling as a more robust method to suit various needs for the design of fluidized-bed gasifiers.

Suggested Citation

  • Mazda Biglari & Hui Liu & Ali Elkamel & Ali Lohi, 2016. "Application of Scaling-Law and CFD Modeling to Hydrodynamics of Circulating Biomass Fluidized Bed Gasifier," Energies, MDPI, vol. 9(7), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:504-:d:73146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/7/504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/7/504/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Sitka & Wiesław Jodkowski & Piotr Szulc & Daniel Smykowski & Bogusław Szumiło, 2021. "Study of the Properties and Particulate Matter Content of the Gas from the Innovative Pilot-Scale Gasification Installation with Integrated Ceramic Filter," Energies, MDPI, vol. 14(22), pages 1-11, November.
    2. Rukshan Jayathilake & Souman Rudra, 2017. "Numerical and Experimental Investigation of Equivalence Ratio (ER) and Feedstock Particle Size on Birchwood Gasification," Energies, MDPI, vol. 10(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:7:p:504-:d:73146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.