IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p961-d83055.html
   My bibliography  Save this article

An Adaptive Speed Control Approach for DC Shunt Motors

Author

Listed:
  • Ruben Tapia-Olvera

    (Departamento de Ingeniería Eléctrica, Universidad Nacional Autónoma de México, Av. Universidad 3000, Cd. Universitaria, Delegación Coyoacán, C.P. 04510 Mexico City, Mexico)

  • Francisco Beltran-Carbajal

    (Departamento de Energía, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Av. San Pablo No. 180, Col. Reynosa Tamaulipas, C.P. 02200 Mexico City, Mexico)

  • Omar Aguilar-Mejia

    (Departamento de Ingeniería, Universidad Politécnica de Tulancingo, Ingenierías No. 100. Col. Huapalcalco, C.P. 43629 Tulancingo, Mexico)

  • Antonio Valderrabano-Gonzalez

    (Facultad de Ingeniería, Universidad Panamericana (Campus Guadalajara), Prolongación Calzada Circunvalación Poniente 49, C.P. 45010 Zapopan, Mexico)

Abstract

A B-spline neural networks-based adaptive control technique for angular speed reference trajectory tracking tasks with highly efficient performance for direct current shunt motors is proposed. A methodology for adaptive control and its proper training procedure are introduced. This algorithm sets the control signal without using a detailed mathematical model nor exact values of the parameters of the nonlinear dynamic system. The proposed robust adaptive tracking control scheme only requires measurements of the velocity output signal. Thus, real-time measurements or estimations of acceleration, current and disturbance signals are avoided. Experimental results confirm the efficient and robust performance of the proposed control approach for highly demanding motor operation conditions exposed to variable-speed reference trajectories and completely unknown load torque. Hence, laboratory experimental tests on a direct current shunt motor prove the viability of the proposed adaptive output feedback trajectory tracking control approach.

Suggested Citation

  • Ruben Tapia-Olvera & Francisco Beltran-Carbajal & Omar Aguilar-Mejia & Antonio Valderrabano-Gonzalez, 2016. "An Adaptive Speed Control Approach for DC Shunt Motors," Energies, MDPI, vol. 9(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:961-:d:83055
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/961/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:961-:d:83055. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.