IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i10p792-d79782.html
   My bibliography  Save this article

A Low-Cost High-Performance Interleaved Inductor-Coupled Boost Converter for Fuel Cells

Author

Listed:
  • Long-Yi Chang

    (Department of Electrical Engineering, National Changhua University of Education, Changhua 50074, Taiwan
    Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Jung-Hao Chang

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Kuei-Hsiang Chao

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Yi-Nung Chung

    (Department of Electrical Engineering, National Changhua University of Education, Changhua 50074, Taiwan)

Abstract

This paper presents an interleaved inductor-coupled converter for a fuel cell. It is designed to boost a low input voltage from a fuel cell to a specified voltage level for DC load or high voltage DC link, thus providing a high-voltage conversion ratio. The presented converter mainly involves coupled inductors and capacitor of voltage doublers for boosting purposes, but the voltage ratings of the involved power switches and diodes, in particular, remain unaffected as the output voltage is boosted. Using an interleaving trigger mechanism, this circuit configuration can not only suppress the input current ripple, but also reduce the current ratings of power switches. In simple terms, it is a low-cost but high-voltage gain converter due to a smaller number of required components and the lower current and voltage ratings of power switches. The operation principles and design steps are detailed herein, and the performance simulations are experimentally validated at the end of the work.

Suggested Citation

  • Long-Yi Chang & Jung-Hao Chang & Kuei-Hsiang Chao & Yi-Nung Chung, 2016. "A Low-Cost High-Performance Interleaved Inductor-Coupled Boost Converter for Fuel Cells," Energies, MDPI, vol. 9(10), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:792-:d:79782
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/10/792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/10/792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Grötsch & Michael Mangold & Achim Kienle, 2009. "Analysis of the Coupling Behavior of PEM Fuel Cells and DC-DC Converters," Energies, MDPI, vol. 2(1), pages 1-26, March.
    2. Ching-Ming Lai & Yuan-Chih Lin & Dasheng Lee, 2015. "Study and Implementation of a Two-Phase Interleaved Bidirectional DC/DC Converter for Vehicle and DC-Microgrid Systems," Energies, MDPI, vol. 8(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    2. Eduardo Augusto Oliveira Barbosa & Márcio Rodrigo Santos de Carvalho & Leonardo Rodrigues Limongi & Marcelo Cabral Cavalcanti & Eduardo José Barbosa & Gustavo Medeiros de Souza Azevedo, 2021. "High-Gain High-Efficiency DC–DC Converter with Single-Core Parallel Operation Switched Inductors and Rectifier Voltage Multiplier Cell," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Yitao Liu & Shan Yin & Xuewei Pan & Huaizhi Wang & Guibin Wang & Jianchun Peng, 2017. "Effects of Nonlinearity in Input Filter on the Dynamic Behavior of an Interleaved Boost PFC Converter," Energies, MDPI, vol. 10(10), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching-Ming Lai & Yu-Huei Cheng & Jiashen Teh & Yuan-Chih Lin, 2017. "A New Combined Boost Converter with Improved Voltage Gain as a Battery-Powered Front-End Interface for Automotive Audio Amplifiers," Energies, MDPI, vol. 10(8), pages 1-20, August.
    2. Ching-Ming Lai & Ming-Ji Yang, 2016. "A High-Gain Three-Port Power Converter with Fuel Cell, Battery Sources and Stacked Output for Hybrid Electric Vehicles and DC-Microgrids," Energies, MDPI, vol. 9(3), pages 1-15, March.
    3. Carlos Restrepo & Oriol Avino & Javier Calvente & Alfonso Romero & Miro Milanovic & Roberto Giral, 2012. "Reactivation System for Proton-Exchange Membrane Fuel-Cells," Energies, MDPI, vol. 5(7), pages 1-20, July.
    4. Alan Cruz Rojas & Guadalupe Lopez Lopez & J. F. Gomez-Aguilar & Victor M. Alvarado & Cinda Luz Sandoval Torres, 2017. "Control of the Air Supply Subsystem in a PEMFC with Balance of Plant Simulation," Sustainability, MDPI, vol. 9(1), pages 1-23, January.
    5. Kou-Bin Liu & Chen-Yao Liu & Yi-Hua Liu & Yuan-Chen Chien & Bao-Sheng Wang & Yong-Seng Wong, 2016. "Analysis and Controller Design of a Universal Bidirectional DC-DC Converter," Energies, MDPI, vol. 9(7), pages 1-23, June.
    6. Xiaocong Li & Xin Chen, 2021. "A Multi-Index Feedback Linearization Control for a Buck-Boost Converter," Energies, MDPI, vol. 14(5), pages 1-14, March.
    7. Yu-En Wu & Yu-Lin Wu, 2016. "Design and Implementation of a High Efficiency, Low Component Voltage Stress, Single-Switch High Step-Up Voltage Converter for Vehicular Green Energy Systems," Energies, MDPI, vol. 9(10), pages 1-16, September.
    8. Hailong Zhang & Yafei Chen & Sung-Jun Park & Dong-Hee Kim, 2019. "A Family of Bidirectional DC–DC Converters for Battery Storage System with High Voltage Gain," Energies, MDPI, vol. 12(7), pages 1-19, April.
    9. Ching-Ming Lai & Yun-Hsiu Li & Yu-Huei Cheng & Jiashen Teh, 2018. "A High-Gain Reflex-Based Bidirectional DC Charger with Efficient Energy Recycling for Low-Voltage Battery Charging-Discharging Power Control," Energies, MDPI, vol. 11(3), pages 1-14, March.
    10. Michal Frivaldsky & Slavomir Kascak & Jan Morgos & Michal Prazenica, 2020. "From Non-Modular to Modular Concept of Bidirectional Buck/Boost Converter for Microgrid Applications," Energies, MDPI, vol. 13(12), pages 1-23, June.
    11. Ersan Kabalci & Aydin Boyar, 2022. "Highly Efficient Interleaved Solar Converter Controlled with Extended Kalman Filter MPPT," Energies, MDPI, vol. 15(21), pages 1-24, October.
    12. Ching-Ming Lai, 2016. "Development of a Novel Bidirectional DC/DC Converter Topology with High Voltage Conversion Ratio for Electric Vehicles and DC-Microgrids," Energies, MDPI, vol. 9(6), pages 1-25, May.
    13. Chih-Lung Shen & Po-Chieh Chiu & Yan-Chi Lee, 2016. "Novel Interleaved Converter with Extra-High Voltage Gain to Process Low-Voltage Renewable-Energy Generation," Energies, MDPI, vol. 9(11), pages 1-12, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:10:p:792-:d:79782. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.