IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i8p8355-8370d53904.html
   My bibliography  Save this article

A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging

Author

Listed:
  • Yabiao Gao

    (College of Engineering, University of Georgia, Athens, GA 30602, USA)

  • Kathleen Blair Farley

    (Southern Company Services, Inc., Birmingham, AL 35291, USA)

  • Zion Tsz Ho Tse

    (College of Engineering, University of Georgia, Athens, GA 30602, USA)

Abstract

The efficiency of wireless power transfer is sensitive to the horizontal and vertical distances between the transmitter and receiver coils due to the magnetic coupling change. To address the output voltage variation and efficiency drop caused by misalignment, a uniform voltage gain frequency control is implemented to improve the power delivery and efficiency of wireless power transfer under misalignment. The frequency is tuned according to the amplitude and phase-frequency characteristics of coupling variations in order to maintain a uniform output voltage in the receiver coil. Experimental comparison of three control methods, including fixed frequency control, resonant frequency control, and the proposed uniform gain control was conducted and demonstrated that the uniform voltage gain control is the most robust method for managing misalignment in wireless charging applications.

Suggested Citation

  • Yabiao Gao & Kathleen Blair Farley & Zion Tsz Ho Tse, 2015. "A Uniform Voltage Gain Control for Alignment Robustness in Wireless EV Charging," Energies, MDPI, vol. 8(8), pages 1-16, August.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8355-8370:d:53904
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/8/8355/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/8/8355/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Po Hu & Jieshuai Ren & Wenan Li, 2016. "Frequency-Splitting-Free Synchronous Tuning of Close-Coupling Self-Oscillating Wireless Power Transfer," Energies, MDPI, vol. 9(7), pages 1-16, June.
    2. Ravikiran Vaka & Ritesh Kumar Keshri, 2017. "Review on Contactless Power Transfer for Electric Vehicle Charging," Energies, MDPI, vol. 10(5), pages 1-20, May.
    3. Kafeel Ahmed Kalwar & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan, 2016. "Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging," Energies, MDPI, vol. 9(11), pages 1-13, November.
    4. Jin Zhang & Chonghu Cheng, 2016. "Analysis and Optimization of Three-Resonator Wireless Power Transfer System for Predetermined-Goals Wireless Power Transmission," Energies, MDPI, vol. 9(4), pages 1-20, April.
    5. Linlin Tan & Jinpeng Guo & Xueliang Huang & Han Liu & Changxin Yan & Wei Wang, 2016. "Power Control Strategies of On-Road Charging for Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-14, July.
    6. Xu Liu & Lindsay Clare & Xibo Yuan & Chonglin Wang & Jianhua Liu, 2017. "A Design Method for Making an LCC Compensation Two-Coil Wireless Power Transfer System More Energy Efficient Than an SS Counterpart," Energies, MDPI, vol. 10(9), pages 1-29, September.
    7. Qichang Duan & Yanling Li & Xin Dai & Tao Zou, 2017. "A Novel High Controllable Voltage Gain Push-Pull Topology for Wireless Power Transfer System," Energies, MDPI, vol. 10(4), pages 1-13, April.
    8. Zhenshi Wang & Xuezhe Wei & Haifeng Dai, 2015. "Design and Control of a 3 kW Wireless Power Transfer System for Electric Vehicles," Energies, MDPI, vol. 9(1), pages 1-18, December.
    9. Zhongyu Dai & Junhua Wang & Mengjiao Long & Hong Huang, 2017. "A Witricity-Based High-Power Device for Wireless Charging of Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-14, March.
    10. Karam Hwang & Jaeyong Cho & Dongwook Kim & Jaehyoung Park & Jong Hwa Kwon & Sang Il Kwak & Hyun Ho Park & Seungyoung Ahn, 2017. "An Autonomous Coil Alignment System for the Dynamic Wireless Charging of Electric Vehicles to Minimize Lateral Misalignment," Energies, MDPI, vol. 10(3), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:8:p:8355-8370:d:53904. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.