IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p1644-1662d46210.html
   My bibliography  Save this article

Research on Shaft Subsynchronous Oscillation Characteristics of Parallel Generators and SSDC Application in Mitigating SSO of Multi-Generators

Author

Listed:
  • Shen Wang

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

  • Zheng Xu

    (College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China)

Abstract

Subsynchronous oscillation (SSO) of generators caused by high voltage direct current (HVDC) systems can be solved by applying supplemental subsynchronous damping controller (SSDC). SSDC application in mitigating SSO of single-generator systems has been studied intensively. This paper focuses on SSDC application in mitigating SSO of multi-generator systems. The phase relationship of the speed signals of the generators under their common mechanical natural frequencies is a key consideration in SSDC design. The paper studies in detail the phase relationship of the speed signals of two generators in parallel under their shared mechanical natural frequency, revealing regardless of whether the two generators are identical or not, there always exists a common-mode and an anti-mode under their common natural frequency, and the phase relationship of the speed signals of the generators depends on the extent to which the anti-mode is stimulated. The paper further demonstrates that to guarantee the effectiveness of SSDC, the anti-phase mode component of its input signal should be eliminated. Based on the above analysis, the paper introduces the design process of SSDC for multi-generator systems and verifies its effectiveness through simulation in Power Systems Computer Aided Design/Electromagnetic Transients including Direct Current (PSCAD/EMTDC).

Suggested Citation

  • Shen Wang & Zheng Xu, 2015. "Research on Shaft Subsynchronous Oscillation Characteristics of Parallel Generators and SSDC Application in Mitigating SSO of Multi-Generators," Energies, MDPI, vol. 8(3), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1644-1662:d:46210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/1644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/1644/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Bongini & Rosa Anna Mastromauro & Daniele Sgrò & Fabrizio Malvaldi, 2021. "Phase-Controlled Thyristor Sub-Synchronous Damper Converter for a Liquefied Natural Gas Plant," Energies, MDPI, vol. 14(17), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1644-1662:d:46210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.