IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i3p1288-1299d33667.html
   My bibliography  Save this article

A Fast Solution for the Lagrange Multiplier-Based Electric Power Network Parameter Error Identification Model

Author

Listed:
  • Ye Guo

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Wenchuan Wu

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Boming Zhang

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

  • Hongbin Sun

    (Department of Electrical Engineering, Tsinghua University, Beijing 100084, China)

Abstract

The Lagrange multiplier-based method is an effective network parameter error identification method. However, two full matrices with high-dimensions are involved in the calculation procedure; these create huge computational burdens for large-scale power systems. To solve this problem, a fast solution is proposed in this paper, where special treatment techniques for full matrices are used to dramatically improve the calculation efficiency. A practical parameter error identification program has been developed and used in many electric power control centers. In this paper, the results for test systems and on-site applications are given, which show that the proposed approach is very efficient.

Suggested Citation

  • Ye Guo & Wenchuan Wu & Boming Zhang & Hongbin Sun, 2014. "A Fast Solution for the Lagrange Multiplier-Based Electric Power Network Parameter Error Identification Model," Energies, MDPI, vol. 7(3), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:3:p:1288-1299:d:33667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/3/1288/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/3/1288/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Shi & Yueting Hou & Yue Yu & Zhaoyang Jin & Mohamed A. Mohamed, 2023. "Robust Power System State Estimation Method Based on Generalized M-Estimation of Optimized Parameters Based on Sampling," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    2. Tao Jin & Fuliang Chu & Cong Ling & Daniel Legrand Mon Nzongo, 2015. "A Robust WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 8(4), pages 1-19, April.
    3. Wei-Tzer Huang & Kai-Chao Yao & Chun-Ching Wu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2016. "A Three-Stage Optimal Approach for Power System Economic Dispatch Considering Microgrids," Energies, MDPI, vol. 9(11), pages 1-18, November.
    4. Tao Jin & Xueyu Shen, 2018. "A Mixed WLS Power System State Estimation Method Integrating a Wide-Area Measurement System and SCADA Technology," Energies, MDPI, vol. 11(2), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:3:p:1288-1299:d:33667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.