IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2284-d1646128.html
   My bibliography  Save this article

Analysis of the Pelletability of Vegetable Crop Foliage Using a Commercial Flat Die Pellet Mill

Author

Listed:
  • Omid Gholami Banadkoki

    (Biomass and Bioenergy Research Group (BBRG), University of British Columbia, Vancouver, BC V6T 1Z3, Canada
    Chemical and Biological Engineering Department, Faculty of Applied Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada)

  • Shahab Sokhansanj

    (Biomass and Bioenergy Research Group (BBRG), University of British Columbia, Vancouver, BC V6T 1Z3, Canada
    Chemical and Biological Engineering Department, Faculty of Applied Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
    Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada)

  • Anthony Lau

    (Biomass and Bioenergy Research Group (BBRG), University of British Columbia, Vancouver, BC V6T 1Z3, Canada
    Chemical and Biological Engineering Department, Faculty of Applied Science, University of British Columbia, Vancouver, BC V6T 1Z3, Canada)

Abstract

Agricultural residues serve as a vast yet underutilized biomass resource with significant potential for bioenergy and biomaterial applications. Converting these residues into densified biomass pellets enhances energy density, handling efficiency, and transportability, offering a sustainable alternative to conventional feedstocks. While extensive research has focused on woody biomass, studies on the pelletization of vegetable crop foliage remain limited. This study examines the pelletability of foliage from corn, soybean, tomato, eggplant, cucumber, and summer squash, assessing their physical properties, bulk durability, bulk density, and energy consumption during pelletization. Results demonstrated that variation in biomass composition significantly influences pellet quality, with lignin content improving durability and ash content affecting moisture uptake and combustion properties. Cucumber had the highest pellet density (691.2 kg/m 3 ) and durability (97.9%), making it suitable for long-term storage and transport. Sawdust exhibited the lowest moisture absorption (16–18% db), which is attributed to its highest lignin content. Pelletization energy requirements varied significantly, with cucumber (21.8 kWh/t) and summer squash (18.7 kWh/t) requiring the lowest energy input, whereas soybean (49.6 kWh/t) and sawdust (47.3 kWh/t) exhibited the highest energy demands due to greater resistance to densification. A predictive model was developed to correlate single pellet density and durability with bulk pellet properties—yielding high predictive accuracy, with R 2 = 0.936 for bulk density ( B D e ) and R 2 = 0.861 for bulk durability ( B D u )—thereby facilitating process optimization for large-scale pellet production. This study demonstrated that foliage residues from greenhouse crops, such as cucumber and summer squash, can be effectively pelletized with low energy input and high physical integrity. These outcomes suggest that such underutilized agricultural residues hold promise as a densified intermediate feedstock, supporting future applications in bioenergy systems and advancing circular resource use in controlled-environment agriculture.

Suggested Citation

  • Omid Gholami Banadkoki & Shahab Sokhansanj & Anthony Lau, 2025. "Analysis of the Pelletability of Vegetable Crop Foliage Using a Commercial Flat Die Pellet Mill," Energies, MDPI, vol. 18(9), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2284-:d:1646128
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Antar, Mohammed & Lyu, Dongmei & Nazari, Mahtab & Shah, Ateeq & Zhou, Xiaomin & Smith, Donald L., 2021. "Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    3. Jean de Dieu Marcel Ufitikirezi & Martin Filip & Mohammad Ghorbani & Tomáš Zoubek & Pavel Olšan & Roman Bumbálek & Miroslav Strob & Petr Bartoš & Sandra Nicole Umurungi & Yves Theoneste Murindangabo &, 2024. "Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion," Sustainability, MDPI, vol. 16(9), pages 1-24, April.
    4. Robyn Jadischke & William David Lubitz, 2025. "Current State of Greenhouse Waste Biomass Disposal Methods, with a Focus on Essex County Ontario," Sustainability, MDPI, vol. 17(4), pages 1-27, February.
    5. Yantao Yang & Lei Song & Yuanna Li & Yilin Shen & Mei Yang & Yunbo Wang & Hesheng Zheng & Wei Qi & Tingzhou Lei, 2025. "Effects of Different Biomass Types on Pellet Qualities and Processing Energy Consumption," Agriculture, MDPI, vol. 15(3), pages 1-19, January.
    6. Vincenzo Civitarese & Angelo Del Giudice & Andrea Acampora & Elisa Fischetti & Thomas Gasperini & Carmine De Francesco & Giuseppe Toscano & Antonio Scarfone, 2024. "Combustion of Pelletized Coffee Residues for Bioenergy Valorization Within a Circular Economy Vision," Energies, MDPI, vol. 17(23), pages 1-13, November.
    7. Ríos-Badrán, Inés M. & Luzardo-Ocampo, Iván & García-Trejo, Juan Fernando & Santos-Cruz, José & Gutiérrez-Antonio, Claudia, 2020. "Production and characterization of fuel pellets from rice husk and wheat straw," Renewable Energy, Elsevier, vol. 145(C), pages 500-507.
    8. Muhammad Haseeb Raza & Muhammad Abid & Muhammad Faisal & Tingwu Yan & Shoaib Akhtar & K. M. Mehedi Adnan, 2022. "Environmental and Health Impacts of Crop Residue Burning: Scope of Sustainable Crop Residue Management Practices," IJERPH, MDPI, vol. 19(8), pages 1-19, April.
    9. Tao Huang & Hongqiang Li & Guoqiang Zhang & Feng Xu, 2020. "Experimental Study on Biomass Heating System in the Greenhouse: A Case Study in Xiangtan, China," Sustainability, MDPI, vol. 12(14), pages 1-17, July.
    10. Omid Gholami Banadkoki & Shahab Sokhansanj & Anthony Lau & Selvakumari Arunachalam & Donald Smith, 2025. "The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops," Energies, MDPI, vol. 18(8), pages 1-17, April.
    11. Dao, Cuong N. & Salam, Abdul & Kim Oanh, Nguyen Thi & Tabil, Lope G., 2022. "Effects of length-to-diameter ratio, pinewood sawdust, and sodium lignosulfonate on quality of rice straw pellets produced via a flat die pellet mill," Renewable Energy, Elsevier, vol. 181(C), pages 1140-1154.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omid Gholami Banadkoki & Shahab Sokhansanj & Anthony Lau & Selvakumari Arunachalam & Donald Smith, 2025. "The Physiochemical Properties of Pellets Made from the Foliage of Vegetable Crops," Energies, MDPI, vol. 18(8), pages 1-17, April.
    2. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    3. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    4. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    5. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    6. Małgorzata Dula & Artur Kraszkiewicz & Stanisław Parafiniuk, 2024. "Combustion Efficiency of Various Forms of Solid Biofuels in Terms of Changes in the Method of Fuel Feeding into the Combustion Chamber," Energies, MDPI, vol. 17(12), pages 1-20, June.
    7. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    8. Paulina Zdanowska & Iwona Florczak & Jacek Słoma & Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "An Evaluation of the Quality and Microstructure of Biodegradable Composites as Contribution towards Better Management of Food Industry Wastes," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    9. Daniel B. Sulis & Nathalie Lavoine & Heike Sederoff & Xiao Jiang & Barbara M. Marques & Kai Lan & Carlos Cofre-Vega & Rodolphe Barrangou & Jack P. Wang, 2025. "Advances in lignocellulosic feedstocks for bioenergy and bioproducts," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    10. Chaudhary, Anu & Rathour, Ranju Kumari & Solanki, Preeti & Mehta Kakkar, Preeti & Pathania, Shruti & Walia, Abhishek & Baadhe, Rama Raju & Bhatia, Ravi Kant, 2025. "Recent technological advancements in biomass conversion to biofuels and bioenergy for circular economy roadmap," Renewable Energy, Elsevier, vol. 244(C).
    11. Li, Chao & Sun, Yifan & Yi, Zijun & Zhang, Lijun & Zhang, Shu & Hu, Xun, 2022. "Co-pyrolysis of coke bottle wastes with cellulose, lignin and sawdust: Impacts of the mixed feedstock on char properties," Renewable Energy, Elsevier, vol. 181(C), pages 1126-1139.
    12. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    13. Dookheh, Maryam & Najafi Chermahini, Alireza, 2023. "Surface modified mesoporous KIT-5: A catalytic approach to obtain butyl levulinate from starch," Renewable Energy, Elsevier, vol. 211(C), pages 227-235.
    14. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    15. Mieczysław Sikora & Piotr Orliński & Mateusz Bednarski, 2025. "Impact of Ethanol–Diesel Blend on CI Engine Performance and Emissions," Energies, MDPI, vol. 18(9), pages 1-15, April.
    16. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    17. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    18. Kamal Baharin, Nur Syahirah & Tagami-Kanada, Nami & Cherdkeattikul, Supitchaya & Hara, Hirofumi & Ida, Tamio, 2024. "Effects of repetitive production on the mechanical characteristic and chemical structure of green tea bio-coke," Renewable Energy, Elsevier, vol. 222(C).
    19. Sher, Farooq & Smječanin, Narcisa & Khan, Muhammad Kashif & Shabbir, Imran & Ali, Salman & Hatshan, Mohammad Rafe & Ul Hai, Irfan, 2024. "Agglomeration behaviour of various biomass fuels under different air staging conditions in fluidised bed technology for renewable energy applications," Renewable Energy, Elsevier, vol. 227(C).
    20. Rajeev Kumar Gupta & Hitesh Hans & Anu Kalia & Jasjit Singh Kang & Jagroop Kaur & Paramjit Kaur Sraw & Anmol Singh & Abed Alataway & Ahmed Z. Dewidar & Mohamed A. Mattar, 2022. "Long-Term Impact of Different Straw Management Practices on Carbon Fractions and Biological Properties under Rice–Wheat System," Agriculture, MDPI, vol. 12(10), pages 1-16, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2284-:d:1646128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.