IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i9p2261-d1645352.html
   My bibliography  Save this article

An Improved PSO-Based DC Discharge Heating Strategy for Lithium-Ion Batteries at Low Temperatures

Author

Listed:
  • Shaojian Han

    (School of Energy and Power Engineering, North University of China, Taiyuan 030051, China)

  • Chengwei Li

    (School of Energy and Power Engineering, North University of China, Taiyuan 030051, China)

  • Jifeng Ding

    (China North Engine Research Institute, Tianjin 300400, China)

  • Xinhua Gao

    (School of Energy and Power Engineering, North University of China, Taiyuan 030051, China)

  • Xiaojie Li

    (School of Energy and Power Engineering, North University of China, Taiyuan 030051, China)

  • Zhiwen Zhang

    (School of Vehicle and Energy, Yanshan University, Qinhuangdao 066000, China)

Abstract

In low-temperature environments, both the electrochemical and thermodynamic performances of lithium-ion batteries are significantly affected, leading to a substantial decline in overall performance. This deterioration is primarily manifested in the inability of the battery to release its actual capacity effectively, a marked reduction in charge–discharge efficiency, and accelerated capacity degradation, directly undermining its power output capability under low-temperature conditions. This performance degradation severely restricts the application of lithium-ion batteries in scenarios requiring high power and extended range, such as EVs. This paper proposes an intelligent low-temperature DC discharge heating optimization strategy based on the PSO algorithm. The strategy aims to simultaneously optimize heating time and minimize capacity loss by employing the PSO algorithm to dynamically optimize discharge currents under varying ambient temperatures. This approach achieves the simultaneous optimization of battery heating efficiency and capacity loss. It effectively overcomes the limitation of traditional constant-current discharge methods, which struggle to dynamically adjust current intensity based on real operating conditions. By balancing heating efficiency and capacity degradation, the model significantly enhances energy utilization. Taking the weighting factor λ = 0.5 as an example, the battery is heated from −30 °C to 0 °C at a 90% initial SOC. Compared to preheating methods that directly use the minimum optimized dynamic current threshold, it reduces heating time by 48.71 s and increases the heating rate by more than twofold. In contrast to preheating methods using the maximum optimized dynamic current threshold, it decreases capacity degradation by 0.10 Ah after 1000 heating cycles. This strategy addresses the limitations of traditional heating methods, providing a novel solution for the efficient application of lithium-ion batteries in low-temperature environments.

Suggested Citation

  • Shaojian Han & Chengwei Li & Jifeng Ding & Xinhua Gao & Xiaojie Li & Zhiwen Zhang, 2025. "An Improved PSO-Based DC Discharge Heating Strategy for Lithium-Ion Batteries at Low Temperatures," Energies, MDPI, vol. 18(9), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2261-:d:1645352
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/9/2261/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/9/2261/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruan, Haijun & Jiang, Jiuchun & Sun, Bingxiang & Su, Xiaojia & He, Xitian & Zhao, Kejie, 2019. "An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction," Applied Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Xingyi & Li, Guangzhe & Zhang, Ruihan & Esan, Oladapo Christopher & Huo, Xiaoyu & Wu, Qixing & An, Liang, 2024. "Operation of rechargeable metal-ion batteries in low-temperature environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Lu, Fenglian & Chen, Weiye & Hu, Shuzhi & Chen, Lei & Sharshir, Swellam W. & Dong, Chuanshuai & Zhang, Lizhi, 2024. "Achieving a smart thermal management for lithium-ion batteries by electrically-controlled crystallization of supercooled calcium chloride hexahydrate solution," Applied Energy, Elsevier, vol. 364(C).
    3. Qing Li & Yu-Qiang Shao & Huan-Ling Liu & Xiao-Dong Shao, 2020. "Multi-Objective Optimization of Activation Time and Discharge Time of Thermal Battery Using a Genetic Algorithm Approach," Energies, MDPI, vol. 13(24), pages 1-17, December.
    4. Guo, Shanshan & Yang, Ruixin & Shen, Weixiang & Liu, Yongsheng & Guo, Shenggang, 2022. "DC-AC hybrid rapid heating method for lithium-ion batteries at high state of charge operated from low temperatures," Energy, Elsevier, vol. 238(PB).
    5. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Ke, Yuzhi & Qiu, Zhiqiang & Luo, Jian & Tang, Yong & Wang, Chun & Yuan, Yuhang & Huang, Yao, 2020. "A review on structuralized current collectors for high-performance lithium-ion battery anodes," Applied Energy, Elsevier, vol. 276(C).
    6. Xiong, Rui & Li, Zhengyang & Yang, Ruixin & Shen, Weixiang & Ma, Suxiao & Sun, Fengchun, 2022. "Fast self-heating battery with anti-aging awareness for freezing climates application," Applied Energy, Elsevier, vol. 324(C).
    7. Qin, Yudi & Du, Jiuyu & Lu, Languang & Gao, Ming & Haase, Frank & Li, Jianqiu & Ouyang, Minggao, 2020. "A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life," Applied Energy, Elsevier, vol. 280(C).
    8. Yao Ahoutou & Adrian Ilinca & Mohamad Issa, 2022. "Electrochemical Cells and Storage Technologies to Increase Renewable Energy Share in Cold Climate Conditions—A Critical Assessment," Energies, MDPI, vol. 15(4), pages 1-30, February.
    9. Bingxiang Sun & Xianjie Qi & Donglin Song & Haijun Ruan, 2023. "Review of Low-Temperature Performance, Modeling and Heating for Lithium-Ion Batteries," Energies, MDPI, vol. 16(20), pages 1-37, October.
    10. Sourav Das & Pranav Shrotriya, 2024. "Electrochemical Mechanism Underlying Lithium Plating in Batteries: Non-Invasive Detection and Mitigation," Energies, MDPI, vol. 17(23), pages 1-31, November.
    11. Wang, Yongzhen & Liu, Qi & Hao, Shengli & Cheng, Liqiang & Zhang, Wei & Han, Kai & Wang, Enhua & Ouyang, Minggao & Lu, Languang & Li, Xinxi, 2025. "Low temperature heating methods for lithium-ion batteries: A state-of-art review based on knowledge graph," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    12. Bingxiang Sun & Xinze Zhao & Xitian He & Haijun Ruan & Zhenlin Zhu & Xingzhen Zhou, 2023. "Virtual Battery Pack-Based Battery Management System Testing Framework," Energies, MDPI, vol. 16(2), pages 1-21, January.
    13. Tang, Aihua & Gong, Peng & Huang, Yukun & Xiong, Rui & Hu, Yuanzhi & Feng, Renhua, 2024. "Orthogonal design based pulse preheating strategy for cold lithium-ion batteries," Applied Energy, Elsevier, vol. 355(C).
    14. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2022. "Self-powered heating strategy for lithium-ion battery pack applied in extremely cold climates," Energy, Elsevier, vol. 239(PB).
    15. Togun, Hussein & S. Sultan Aljibori, Hakim & Biswas, Nirmalendu & I. Mohammed, Hayder & M. Sadeq, Abdellatif & Lafta Rashid, Farhan & Abdulrazzaq, Tuqa & Ali Zearah, Sajad, 2024. "A critical review on the efficient cooling strategy of batteries of electric vehicles: Advances, challenges, future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
    16. Cheng, Gong & Wang, Zhangzhou & Wang, Xinzhi & He, Yurong, 2022. "All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity," Applied Energy, Elsevier, vol. 322(C).
    17. Di Giorgio, Paolo & Di Ilio, Giovanni & Jannelli, Elio & Conte, Fiorentino Valerio, 2022. "Innovative battery thermal management system based on hydrogen storage in metal hydrides for fuel cell hybrid electric vehicles," Applied Energy, Elsevier, vol. 315(C).
    18. Wang, Yujie & Zhang, Xingchen & Chen, Zonghai, 2022. "Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges," Applied Energy, Elsevier, vol. 313(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2261-:d:1645352. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.