Author
Listed:
- Emmanuel Bala
(Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)
- Ursel Hornung
(Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)
- Nicolaus Dahmen
(Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)
Abstract
The complex nature of the hydrothermal liquefaction (HTL) of lignin product downstream requires an effective separation strategy. In this study, the use of adsorption separation was undertaken using deep eutectic solvent (DES)-modified amberlite XAD-4 adsorbents to achieve this goal. XAD-4 was modified with a choline chloride: ethylene glycol DES and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and the Brunauer–Emmett–Teller (BET) test. In addition, the HTL product was characterized using Gas Chromatography with Flame Ionization Detection (GC-FID). The performance of unmodified and DES-modified adsorbents was initially tested on the model compounds of guaiacol, phenol and catechol, followed by the HTL product in a batch adsorption system. The Freundlich model best described the model compound adsorption system with a preferential affinity for guaiacol (k f = 12.52), outperforming phenol and catechol. Adsorption experiments showed an increase in capacity and selectivity for all species when the DES-modified adsorbents were used at all mass loadings. GC-FID analytics showed the DES-modified XAD-4 (300 mg) as having the highest selectivity for guaiacol, with an equilibrium concentration of 121.45 mg/L representing an 85.25% uptake, while catechol was the least favorably adsorbed. These results demonstrate the potential of DES-functionalized XAD-4 adsorbents in selectively isolating high-value aromatics from the HTL of the lignin product stream.
Suggested Citation
Emmanuel Bala & Ursel Hornung & Nicolaus Dahmen, 2025.
"Hydrothermal Liquefaction (HTL) of Lignin: The Adsorption Separation of Catechol Guaiacol and Phenol,"
Energies, MDPI, vol. 18(9), pages 1-15, April.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:9:p:2181-:d:1641683
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:9:p:2181-:d:1641683. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.