IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i4p913-d1590828.html
   My bibliography  Save this article

Research on Distribution Network Fault Location Based on Electric Field Coupling Voltage Sensing and Multi-Source Information Fusion

Author

Listed:
  • Bo Li

    (Yunnan Power Grid Co., Ltd., Electric Power Science Research Institute, Kunming 650217, China)

  • Lijun Tang

    (Yunnan Power Grid Co., Ltd., Electric Power Science Research Institute, Kunming 650217, China)

  • Zhiming Gu

    (Yunnan Power Grid Co., Ltd., Electric Power Science Research Institute, Kunming 650217, China)

  • Li Liu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

  • Zhensheng Wu

    (School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044, China)

Abstract

As the last link of power transmission, the safe operation of the distribution network directly affects the experience of power users, and short-time distribution network faults can cause huge economic losses. There are few fault recording devices in rural or suburban distribution networks, and it is difficult to upload information, which brings difficulties to accurate fault location. In order to improve the accuracy of fault location, this study proposes a fault location method for distribution networks based on electric field-coupled voltage sensing and multi-source information fusion. First, an optimized resource pool architecture is proposed, and a distribution network data fusion platform is established based on this architecture to effectively integrate voltage, current and other fault data. Second, in order to overcome the problem of expanding the fault location range that may be caused by the current-based matrix algorithm, this study proposes an improved directed graph-based matrix algorithm and combines it with the matrix algorithm of voltage quantities to form a joint location criterion, which improves the accuracy of fault location. Finally, for the single-ended ranging method, which is easily affected by the wave impedance discontinuity points in the system or the transition resistance in the line, this article introduces a fault ranging algorithm based on double-ended electrical quantities, which improves the accuracy and applicable range of fault ranging. Through simulation verification, we found that the matrix algorithm based on the electrical quantity can accurately locate the fault section in the case of a single fault with a single power supply. The proposed joint matrix algorithm can accurately locate the fault section in the case of a single fault with multiple power sources. The ranging algorithm based on double-ended electrical quantities has higher ranging accuracy in both interphase short circuits and grounded short circuits, and the ranging results are not affected by the fault type, fault location and transition resistance, which can effectively improve the efficiency and reliability of fault location.

Suggested Citation

  • Bo Li & Lijun Tang & Zhiming Gu & Li Liu & Zhensheng Wu, 2025. "Research on Distribution Network Fault Location Based on Electric Field Coupling Voltage Sensing and Multi-Source Information Fusion," Energies, MDPI, vol. 18(4), pages 1-26, February.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:913-:d:1590828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/4/913/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/4/913/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:913-:d:1590828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.