Author
Listed:
- Yue Zhuo
(School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China)
- Bo Hong
(School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China)
Abstract
Wind is an important renewable energy source, and even minor variations in wind speed will significantly impact wind power generation. The objective of this study was to systematically assess the impacts of climate change on wind energy resources in the South China Sea (SCS) under future climate projections. To achieve this, we employed a multi-model ensemble approach based on Coupled Model Intercomparison Project Phase 6 (CMIP6) data under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results demonstrated that, in comparison with scatterometer wind data, the CMIP6 historical results (1995–2014) showed good performance in capturing the spatiotemporal distribution of wind power density (WPD) in the SCS. There were regional discrepancies in the central SCS due to the complex monsoon-driven wind dynamics. Future projections revealed an overall increase in annual mean wind power density (WPD) across the entire SCS by the mid-21st century (2046–2065) and late 21st century (2080–2099). The seasonal analyses indicated significant WPD increases in summer, especially in the northern SCS and the region adjacent to the Kalimantan strait. The increase in summer (>40 × 10 −4 m/s/year under SSP5-8.5) is about triple that in winter. In the late 21st century, an increase in WPD exceeding 10% can be generally anticipated under the SSP2-4.5 and SSP5-8.5 scenarios in all seasons. The extreme wind in the northern and central SCS will further increase by 5% under the three scenarios, which will add an extra extreme load to wind turbines and related marine facilities. These assessments are essential for wind farm planning and long-term energy production evaluations in the SCS. Based on the findings in this study, specific areas of concern can be targeted to conduct localized downscaling analyses and risk assessments.
Suggested Citation
Yue Zhuo & Bo Hong, 2025.
"Potential Impacts of Climate Change on South China Sea Wind Energy Resources Under CMIP6 Future Climate Projections,"
Energies, MDPI, vol. 18(20), pages 1-18, October.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:20:p:5370-:d:1769438
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5370-:d:1769438. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.