Author
Listed:
- Heungseok Lee
(Department of Electrical Engineering, Myongji University, Yongin 17058, Republic of Korea)
- Sang-Hee Kang
(Department of Electrical Engineering, Myongji University, Yongin 17058, Republic of Korea)
- Soon-Ryul Nam
(Department of Electrical Engineering, Myongji University, Yongin 17058, Republic of Korea)
Abstract
Accurate classification between magnetizing inrush currents and internal faults is essential for reliable transformer protection and stable power system operation. Because their transient waveforms are so similar, conventional differential protection and harmonic restraint techniques often fail under dynamic conditions. This study presents a two-stage classification model that combines a self-organizing map (SOM) and a convolutional neural network (CNN) to enhance robustness and accuracy in distinguishing between inrush currents and internal faults in power transformers. In the first stage, an unsupervised SOM identifies topologically structured event clusters without the need for labeled data or predefined thresholds. Seven features are extracted from differential current signals to form fixed-length input vectors. These vectors are projected onto a two-dimensional SOM grid to capture inrush and fault distributions. In the second stage, the SOM’s activation maps are converted to grayscale images and classified by a CNN, thereby merging the interpretability of clustering with the performance of deep learning. Simulation data from a 154 kV MATLAB/Simulink transformer model includes inrush, internal fault, and overlapping events. Results show that after one cycle following fault inception, the proposed method improves accuracy (AC), precision (PR), recall (RC), and F1-score (F1s) by up to 3% compared with a conventional CNN model, demonstrating its suitability for real-time transformer protection.
Suggested Citation
Heungseok Lee & Sang-Hee Kang & Soon-Ryul Nam, 2025.
"Deep Learning-Based Classification of Transformer Inrush and Fault Currents Using a Hybrid Self-Organizing Map and CNN Model,"
Energies, MDPI, vol. 18(20), pages 1-25, October.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:20:p:5351-:d:1768864
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5351-:d:1768864. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.