Author
Listed:
- Ying Wang
(Xi’an Institute of Space Radio Technology, Xi’an 710100, China)
- Ce Wang
(Collage of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China)
- Shiwei Dong
(Xi’an Institute of Space Radio Technology, Xi’an 710100, China)
Abstract
This paper presents an advanced radio frequency (RF)–direct current (DC) power conversion architecture based on a multistage Cockcroft–Walton topology. The proposed design achieves an enhanced voltage conversion ratio while maintaining superior RF-DC conversion efficiency under low input power conditions. To address the inherent limitations of cascading Cockcroft–Walton topologies with class-F load networks, a novel ground plane isolation technique was developed, which utilizes the reverse-side metallization of the circuit board. A 5.8 GHz two-stage Cockcroft–Walton voltage multiplier rectifier was fabricated and characterized. Measurement results demonstrate that the circuit achieves a maximum output voltage of 7.4 V and a peak conversion efficiency of 70.5% with an input power of only 30 mW, while maintaining stable performance across varying load conditions. A comparison with a two-stage Dickson rectifier reveals that the Cockcroft–Walton rectifier exhibits superior output voltage and conversion efficiency. The proposed architecture delivers significant improvements in power conversion efficiency and voltage multiplication capability compared to conventional designs, establishing a new benchmark for low-power wireless energy harvesting applications.
Suggested Citation
Ying Wang & Ce Wang & Shiwei Dong, 2025.
"High-Efficiency Multistage Charge Pump Rectifiers Design,"
Energies, MDPI, vol. 18(20), pages 1-12, October.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:20:p:5350-:d:1768766
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5350-:d:1768766. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.