IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i19p5267-d1764651.html
   My bibliography  Save this article

Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method

Author

Listed:
  • Murat Ispir

    (Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya 42250, Türkiye)

  • Tayfun Tanbay

    (Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Türkiye)

Abstract

Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady current continuity equation, covering a one-dimensional two-region P–N junction and a two-dimensional single-region problem. The study employs Gaussian (GA) and generalized multiquadric (GMQ) bases, systematically varying shape parameter and node density, and presents a detailed performance analysis of the meshless method. Results map the accuracy–stability–computation-time landscape: GA achieves faster convergence but over a narrower stability window, whereas GMQ exhibits greater robustness to shape-parameter variation. We identify stability plateaus that preserve accuracy without severe ill-conditioning and quantify the runtime growth inherent to dense global collocation. A utopia-point multi-objective optimization balances error and computation time to yield practical node-count guidance; for the two-dimensional case with equal weighting, an optimum of 19 intervals per side emerges, largely insensitive to the RBF choice. Collectively, the results establish global RBF collocation as a meshless, accurate, and systematically optimizable alternative to conventional mesh-based solvers for high-fidelity carrier-density prediction in P-N junctions, thereby enabling more reliable performance analysis and design of photovoltaic devices.

Suggested Citation

  • Murat Ispir & Tayfun Tanbay, 2025. "Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method," Energies, MDPI, vol. 18(19), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5267-:d:1764651
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/19/5267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/19/5267/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5267-:d:1764651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.