Author
Listed:
- Qiao Huang
(College of Information Engineering, China Jiliang University, Hangzhou 310018, China)
- Tianfang Xie
(School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907, USA)
- Jinlong Liu
(Power Machinery and Vehicular Engineering Institute, Zhejiang University, Hangzhou 310027, China)
Abstract
In-cylinder pressure provides critical insights for analyzing and optimizing combustion in internal combustion engines, yet its acquisition across the full operating space requires extensive testing, while physics-based models are computationally demanding. Machine learning (ML) offers an alternative, but its application to direct reconstruction of full pressure traces remains limited. This study evaluates three strategies for reconstructing cylinder pressure under unmeasured operating conditions, establishing a machine learning-assisted framework that generates the complete pressure–crank angle (P–CA) trace. The framework treats crank angle and operating conditions as inputs and predicts either pressure directly or apparent heat release rate (HRR) as an intermediate variable, which is then integrated to reconstruct pressure. In all approaches, discrete pointwise predictions are combined to form the full P–CA curve. Direct pressure prediction achieves high accuracy for overall traces but underestimates HRR-related combustion features. Training on HRR improves combustion representation but introduces baseline shifts in reconstructed pressure. A hybrid approach, combining non-combustion pressure prediction with combustion-phase HRR-based reconstruction delivers the most robust and physically consistent results. These findings demonstrate that ML can efficiently reconstruct in-cylinder pressure at unmeasured conditions, reducing experimental requirements while supporting combustion diagnostics, calibration, and digital twin applications.
Suggested Citation
Qiao Huang & Tianfang Xie & Jinlong Liu, 2025.
"Machine Learning-Assisted Reconstruction of In-Cylinder Pressure in Internal Combustion Engines Under Unmeasured Operating Conditions,"
Energies, MDPI, vol. 18(19), pages 1-18, October.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:19:p:5235-:d:1763523
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5235-:d:1763523. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.