IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i19p5196-d1761628.html
   My bibliography  Save this article

Energy Management in an Insular Region with Renewable Energy Sources and Hydrogen: The Case of Graciosa, Azores

Author

Listed:
  • Luís Azevedo

    (Faculdade de Economia, Univerisdade do Porto, R. Roberto Frias, 4200-464 Porto, Portugal)

  • Susana Silva

    (CEFUP and Faculdade de Economia, Universidade do Porto, R. Roberto Frias, 4200-464 Porto, Portugal)

  • António Vilanova

    (Capwatt Metanol, Unipessoal Lda, Lugar de Espido, 4470-177 Maia, Portugal)

  • Erika Laranjeira

    (COMEGI, Universidade Lusíada-Norte, R. de Moçambique 21 e 71, 4100-348 Porto, Portugal
    CEFUP, R. Roberto Frias, 4200-464 Porto, Portugal)

Abstract

Insular regions face unique energy management challenges due to physical isolation. Graciosa (Azores) has high renewable energy sources (RES) potential, theoretically enabling a 100% green system. However, RES intermittency combined with the lack of energy storage solutions reduces renewable penetration and raises curtailment. This article studies the technical and economic feasibility of producing green hydrogen from curtailment energy in Graciosa through two distinct case studies. Case Study 1 targets maximum renewable penetration with green hydrogen serving as chemical storage, converted back to electricity via fuel cells during RES shortages. Case Study 2 focuses on maximum profitability, where produced gases are sold to monetize curtailment, without additional electricity production. Levelized Cost of Hydrogen (LCOH) values of €3.06/kgH 2 and €2.68/kgH 2 , respectively, and Internal Rate of Return (IRR) values of 3.7% and 17.1% were obtained for Case Studies 1 and 2, with payback periods of 15.2 and 6.1 years. Hence, only Case Study 2 is economically viable, but it does not allow increasing the renewable share in the energy mix. Sensitivity analysis for Case Study 1 shows that overall efficiency and CAPEX are the main factors affecting viability, highlighting the need for technological advances and economies of scale, as well as the importance of public funding to promote projects like this.

Suggested Citation

  • Luís Azevedo & Susana Silva & António Vilanova & Erika Laranjeira, 2025. "Energy Management in an Insular Region with Renewable Energy Sources and Hydrogen: The Case of Graciosa, Azores," Energies, MDPI, vol. 18(19), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5196-:d:1761628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/19/5196/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/19/5196/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Joungho & Hwan Ryu, Kyung & Kim, Chang-Hee & Chul Cho, Won & Kim, MinJoong & Hun Lee, Jae & Cho, Hyun-Seok & Lee, Jay H., 2023. "Green hydrogen to tackle the power curtailment: Meteorological data-based capacity factor and techno-economic analysis," Applied Energy, Elsevier, vol. 340(C).
    2. Shan, Rui & Kittner, Noah, 2025. "Sector-specific strategies to increase green hydrogen adoption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    3. Hesel, Philipp & Braun, Sebastian & Zimmermann, Florian & Fichtner, Wolf, 2022. "Integrated modelling of European electricity and hydrogen markets," Applied Energy, Elsevier, vol. 328(C).
    4. Balázs Endrődi & Cintia Alexandra Trapp & István Szén & Imre Bakos & Miklós Lukovics & Csaba Janáky, 2025. "Challenges and Opportunities of the Dynamic Operation of PEM Water Electrolyzers," Energies, MDPI, vol. 18(9), pages 1-11, April.
    5. Ruggero Angelico & Ferruccio Giametta & Biagio Bianchi & Pasquale Catalano, 2025. "Green Hydrogen for Energy Transition: A Critical Perspective," Energies, MDPI, vol. 18(2), pages 1-47, January.
    6. Xu, Yifan & Ji, Mengmeng & Klemeš, Jiří Jaromír & Tao, Hengcong & Zhu, Baikang & Varbanov, Petar Sabev & Yuan, Meng & Wang, Bohong, 2023. "Optimal renewable energy export strategies of islands: Hydrogen or electricity?," Energy, Elsevier, vol. 269(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    2. Qing Chang & Xiangbo Fan & Shaohui Zou, 2025. "Threshold Effects of Renewable Energy Investment on the Energy Efficiency–Fossil Fuel Consumption Nexus: Evidence from 71 Countries," Energies, MDPI, vol. 18(8), pages 1-20, April.
    3. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Cho, Hyun-Seok & Lee, Changsoo & Kim, MinJoong & Lee, Jay H., 2025. "The impact of degradation on the economics of green hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    4. Yajing Gu & He Ren & Hongwei Liu & Yonggang Lin & Weifei Hu & Tian Zou & Liyuan Zhang & Luoyang Huang, 2024. "Simulation of a Tidal Current-Powered Freshwater and Energy Supply System for Sustainable Island Development," Sustainability, MDPI, vol. 16(20), pages 1-24, October.
    5. Sousa, Jorge & Lagarto, João & Barata, Filipe, 2025. "Impact of demand flexibility on renewable energy integration, backup capacity, storage use and dispatchable generation: A case study for Portugal's 2030 National Energy plan," Energy, Elsevier, vol. 320(C).
    6. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    7. Georgios Giakoumakis & Dimitrios Sidiras, 2025. "Production and Storage of Hydrogen from Biomass and Other Sources: Technologies and Policies," Energies, MDPI, vol. 18(3), pages 1-41, January.
    8. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Techno-economics of offshore wind-based dynamic hydrogen production," Applied Energy, Elsevier, vol. 374(C).
    9. Croce, Leandro Firme & Tiago Filho, Geraldo Lúcio & Santos, Ivan Felipe Silva dos & Barros, Regina Mambeli, 2025. "Attractivity analysis of hybrid energy generation based on current energy market scenarios in Brazil," Energy, Elsevier, vol. 318(C).
    10. Wei, Guomeng & Qu, Zhiguo & Zhang, Jianfei & Chen, Weiwen, 2025. "Techno-economic analysis of zero/negative carbon electricity-hydrogen-water hybrid system with renewable energy in remote island," Applied Energy, Elsevier, vol. 381(C).
    11. Akdağ, Ozan, 2025. "Modeling and economic evaluation of hybrid renewable energy sources for green hydrogen production: A case study for the Mediterranean region," Renewable Energy, Elsevier, vol. 240(C).
    12. Zhang, Tong & Qadrdan, Meysam & Wu, Jianzhong & Couraud, Benoit & Stringer, Martin & Walker, Sara & Hawkes, Adam & Allahham, Adib & Flynn, David & Pudjianto, Danny & Dodds, Paul & Strbac, Goran, 2025. "A systematic review of modelling methods for studying the integration of hydrogen into energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    13. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    14. Andrzej Kuranc & Agnieszka Dudziak & Tomasz Słowik, 2025. "Low-Carbon Hydrogen Production and Use on Farms: European and Global Perspectives," Energies, MDPI, vol. 18(19), pages 1-27, October.
    15. Shi, Jiatong & Guo, Yangying & Wang, Sen & Yu, Xinyi & Jiang, Qianyu & Xu, Weidong & Yan, Yamin & Chen, Yujie & Zhang, Hongyu & Wang, Bohong, 2024. "An optimisation method for planning and operating nearshore island power and natural gas energy systems," Energy, Elsevier, vol. 308(C).
    16. Haoyu Zhang & Jiangong Zhu & Chao Wang & Hao Yuan & Haifeng Dai & Xuezhe Wei, 2025. "Experimental Study on the Impact of Flow Rate Strategies on the Mass Transfer Impedance of PEM Electrolyzers," Energies, MDPI, vol. 18(11), pages 1-11, May.
    17. Driemeier, Carlos E. & Tonon, Giovana C. & Chagas, Mateus F. & Petrielli, Gabriel P. & Henzler, Daniele S. & Gomes, Luísa C.M. & Limeira, Bruno E. & Hernandes, Thayse A.D. & Morais, Edvaldo R., 2025. "Electrolytic hydrogen in a large-scale decarbonized grid with energy reservoirs: An assessment of carbon intensity and integrity," Applied Energy, Elsevier, vol. 391(C).
    18. Yang, Zhixue & Li, Hui & Zhang, Hongcai, 2025. "A power-to-methanol-based chemical industry system-aided decarbonization approach for power distribution networks," Applied Energy, Elsevier, vol. 384(C).
    19. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan Mac A., 2024. "Levelised cost of dynamic green hydrogen production: A case study for Australia's hydrogen hubs," Applied Energy, Elsevier, vol. 370(C).
    20. Luciano T. Barbosa & Pedro A. C. Rosas & José F. C. Castro & Samuel D. Vasconcelos & Paulo H. R. P. Gama & Douglas C. P. Barbosa, 2025. "Proposal for an Energy Efficiency Index for Green Hydrogen Production—An Integrated Approach," Energies, MDPI, vol. 18(12), pages 1-29, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5196-:d:1761628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.