IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i19p5171-d1760579.html
   My bibliography  Save this article

An Enhanced Method to Estimate State of Health of Li-Ion Batteries Using Feature Accretion Method (FAM)

Author

Listed:
  • Leila Amani

    (Department of Computer Engineering, Faculty of Engineering, Sanandaj Branch Islamic Azad University (IAU), Sanandaj 6616935391, Iran)

  • Amir Sheikhahmadi

    (Department of Computer Engineering, Faculty of Engineering, Sanandaj Branch Islamic Azad University (IAU), Sanandaj 6616935391, Iran
    Department of Mathematical Science, RMIT University, Melbourne 3001, Australia)

  • Yavar Vafaee

    (Department of Computer Engineering, Faculty of Engineering, Sanandaj Branch Islamic Azad University (IAU), Sanandaj 6616935391, Iran)

Abstract

Accurate estimation of State of Health (SOH) is pivotal for managing the lifecycle of lithium-ion batteries (LIBs) and ensuring safe and reliable operation in electric vehicles (EVs) and energy storage systems. While feature fusion methods show promise for battery health assessment, they often suffer from suboptimal integration strategies and limited utilization of complementary health indicators (HIs). In this study, we propose a Feature Accretion Method (FAM) that systematically integrates four carefully selected health indicators–voltage profiles, incremental capacity (IC), and polynomial coefficients derived from IC–voltage and capacity–voltage curves—via a progressive three-phase pipeline. Unlike single-indicator baselines or naïve feature concatenation methods, FAM couples’ progressive accretion with tuned ensemble learners to maximize predictive fidelity. Comprehensive validation using Gaussian Process Regression (GPR) and Random Forest (RF) on the CALCE and Oxford datasets yields state-of-the-art accuracy: on CALCE, RMSE = 0.09%, MAE = 0.07%, and R 2 = 0.9999; on Oxford, RMSE = 0.33%, MAE = 0.24%, and R 2 = 0.9962. These results represent significant improvements over existing feature fusion approaches, with up to 87% reduction in RMSE compared to state-of-the-art methods. These results indicate a practical pathway to deployable SOH estimation in battery management systems (BMS) for EV and energy storage applications.

Suggested Citation

  • Leila Amani & Amir Sheikhahmadi & Yavar Vafaee, 2025. "An Enhanced Method to Estimate State of Health of Li-Ion Batteries Using Feature Accretion Method (FAM)," Energies, MDPI, vol. 18(19), pages 1-27, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5171-:d:1760579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/19/5171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/19/5171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    2. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    3. Ye, Jinhua & Xie, Quan & Lin, Mingqiang & Wu, Ji, 2024. "A method for estimating the state of health of lithium-ion batteries based on physics-informed neural network," Energy, Elsevier, vol. 294(C).
    4. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
    5. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    6. Lin, Chuanping & Xu, Jun & Shi, Mingjie & Mei, Xuesong, 2022. "Constant current charging time based fast state-of-health estimation for lithium-ion batteries," Energy, Elsevier, vol. 247(C).
    7. Zhang, Zhengjie & Cao, Rui & Zheng, Yifan & Zhang, Lisheng & Guang, Haoran & Liu, Xinhua & Gao, Xinlei & Yang, Shichun, 2024. "Online state of health estimation for lithium-ion batteries based on gene expression programming," Energy, Elsevier, vol. 294(C).
    8. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    9. Nanaki, Evanthia A. & Koroneos, Christopher J., 2016. "Climate change mitigation and deployment of electric vehicles in urban areas," Renewable Energy, Elsevier, vol. 99(C), pages 1153-1160.
    10. Khatua, Apalak & Ranjan Kumar, Rajeev & Kumar De, Supriya, 2023. "Institutional enablers of electric vehicle market: Evidence from 30 countries," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Kui & Luo, Yang & Long, Zhou & Li, Yang & Nie, Guangbo & Liu, Kai & Xin, Dongli & Gao, Guoqiang & Wu, Guangning, 2025. "Big data-driven prognostics and health management of lithium-ion batteries:A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
    2. Wang, Tong & Wu, Yan & Zhu, Keming & Cen, Jianmeng & Wang, Shaohong & Huang, Yuqi, 2025. "Deep learning and polarization equilibrium based state of health estimation for lithium-ion battery using partial charging data," Energy, Elsevier, vol. 317(C).
    3. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Constructing battery impedance spectroscopy using partial current in constant-voltage charging or partial relaxation voltage," Applied Energy, Elsevier, vol. 356(C).
    4. Liu, Kailong & Fang, Jingyang & Zhao, Shiwen & Liu, Yuhang & Dai, Haifeng & Ye, Liwang & Peng, Qiao, 2025. "Battery state-of-health estimation: An ultrasonic detection method with explainable AI," Energy, Elsevier, vol. 319(C).
    5. Chen, Si-Zhe & Liu, Jing & Yuan, Haoliang & Tao, Yibin & Xu, Fangyuan & Yang, Ling, 2025. "AM-MFF: A multi-feature fusion framework based on attention mechanism for robust and interpretable lithium-ion battery state of health estimation," Applied Energy, Elsevier, vol. 381(C).
    6. Ospina Agudelo, Brian & Zamboni, Walter & Postiglione, Fabio & Monmasson, Eric, 2023. "Battery State-of-Health estimation based on multiple charge and discharge features," Energy, Elsevier, vol. 263(PA).
    7. Ko, Chi-Jyun & Chen, Kuo-Ching & Chen, Chih-Hung, 2025. "Advantageous characteristics of constant voltage charging: A good option to estimate battery states for lithium-ion batteries," Energy, Elsevier, vol. 322(C).
    8. Chen, Si-Zhe & Liang, Zikang & Yuan, Haoliang & Yang, Ling & Xu, Fangyuan & Fan, Yuanliang, 2023. "A novel state of health estimation method for lithium-ion batteries based on constant-voltage charging partial data and convolutional neural network," Energy, Elsevier, vol. 283(C).
    9. Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
    10. Giovane Ronei Sylvestrin & Joylan Nunes Maciel & Marcio Luís Munhoz Amorim & João Paulo Carmo & José A. Afonso & Sérgio F. Lopes & Oswaldo Hideo Ando Junior, 2025. "State of the Art in Electric Batteries’ State-of-Health (SoH) Estimation with Machine Learning: A Review," Energies, MDPI, vol. 18(3), pages 1-77, February.
    11. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    12. Ren, Song & Sun, Jing, 2024. "Multi-fault diagnosis strategy based on a non-redundant interleaved measurement circuit and improved fuzzy entropy for the battery system," Energy, Elsevier, vol. 292(C).
    13. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    14. Wang, Kai & Liu, Xing & Guo, Xin & Wang, Jianhang & Wang, Zhuang & Huang, Lianzhong, 2024. "A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach," Energy, Elsevier, vol. 310(C).
    15. Hou, Jiayang & Xu, Jun & Lin, Chuanping & Jiang, Delong & Mei, Xuesong, 2024. "State of charge estimation for lithium-ion batteries based on battery model and data-driven fusion method," Energy, Elsevier, vol. 290(C).
    16. Dai, Houde & Wang, Jiaxin & Huang, Yiyang & Lai, Yuan & Zhu, Liqi, 2024. "Lightweight state-of-health estimation of lithium-ion batteries based on statistical feature optimization," Renewable Energy, Elsevier, vol. 222(C).
    17. Li, Xiaopeng & Zhao, Minghang & Zhong, Shisheng & Li, Junfu & Fu, Song & Yan, Zhiqi, 2024. "BMSFormer: An efficient deep learning model for online state-of-health estimation of lithium-ion batteries under high-frequency early SOC data with strong correlated single health indicator," Energy, Elsevier, vol. 313(C).
    18. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    19. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    20. Xinfeng Zhang & Xiangjun Li & Kaikai Yang & Zhongyi Wang, 2023. "Lithium-Ion Battery Modeling and State of Charge Prediction Based on Fractional-Order Calculus," Mathematics, MDPI, vol. 11(15), pages 1-15, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5171-:d:1760579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.