IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i19p5136-d1759447.html
   My bibliography  Save this article

Research on Control Strategy of Pure Electric Bulldozers Based on Vehicle Speed

Author

Listed:
  • Guangxiao Shen

    (School of Mechanical Engineering, University of Jinan, Jinan 250022, China)

  • Quancheng Dong

    (School of Mechanical Engineering, University of Jinan, Jinan 250022, China)

  • Congfeng Tian

    (Shantui Construction Machinery Co., Ltd., Jining 272073, China)

  • Wenbo Chen

    (Shantui Construction Machinery Co., Ltd., Jining 272073, China)

  • Xiangjie Huang

    (Shantui Construction Machinery Co., Ltd., Jining 272073, China)

  • Jinwei Wang

    (School of Mechanical Engineering, University of Jinan, Jinan 250022, China)

Abstract

This study proposes a hierarchical drive control system to ensure speed stability in dual-motor tracked vehicles operating under complex terrain and heavy-load conditions. The system adopts a two-layer structure. At the upper level, the sliding mode controller is designed for both longitudinal speed regulation and yaw rate control, thereby stabilizing straight line motion and the steering maneuvers. At the lower level, a synchronization mechanism aligns the velocities of the two motors, enhancing the vehicle’s robustness against speed fluctuations. Simulation results demonstrate that, across both heavy load and light load bulldozing scenarios, the deviation between the controller output and the reference command remains within 5 % . These findings confirm the accuracy of the control implementation and validate the effectiveness of the proposed framework.

Suggested Citation

  • Guangxiao Shen & Quancheng Dong & Congfeng Tian & Wenbo Chen & Xiangjie Huang & Jinwei Wang, 2025. "Research on Control Strategy of Pure Electric Bulldozers Based on Vehicle Speed," Energies, MDPI, vol. 18(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5136-:d:1759447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/19/5136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/19/5136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fengyan Yi & Dagang Lu & Xingmao Wang & Chaofeng Pan & Yuanxue Tao & Jiaming Zhou & Changli Zhao, 2022. "Energy Management Strategy for Hybrid Energy Storage Electric Vehicles Based on Pontryagin’s Minimum Principle Considering Battery Degradation," Sustainability, MDPI, vol. 14(3), pages 1-17, January.
    2. Li Zhai & Hong Huang & Steven Kavuma, 2017. "Investigation on a Power Coupling Steering System for Dual-Motor Drive Tracked Vehicles Based on Speed Control," Energies, MDPI, vol. 10(8), pages 1-17, August.
    3. Jia, Chunchun & Liu, Wei & He, Hongwen & Chau, K.T., 2025. "Health-conscious energy management for fuel cell vehicles: An integrated thermal management strategy for cabin and energy source systems," Energy, Elsevier, vol. 333(C).
    4. Hong Wang & Qiang Song & Shengbo Wang & Pu Zeng, 2015. "Dynamic Modeling and Control Strategy Optimization for a Hybrid Electric Tracked Vehicle," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-12, November.
    5. Lu, Dagang & Yi, Fengyan & Hu, Donghai & Li, Jianwei & Yang, Qingqing & Wang, Jing, 2023. "Online optimization of energy management strategy for FCV control parameters considering dual power source lifespan decay synergy," Applied Energy, Elsevier, vol. 348(C).
    6. Jia, Chunchun & Liu, Wei & He, Hongwen & Chau, K.T., 2025. "Superior energy management for fuel cell vehicles guided by improved DDPG algorithm: Integrating driving intention speed prediction and health-aware control," Applied Energy, Elsevier, vol. 394(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Wang & Qiongzhen Zhang, 2025. "The Development of China’s New Energy Vehicle Charging and Swapping Industry: Review and Prospects," Energies, MDPI, vol. 18(17), pages 1-24, August.
    2. Qi Jiang & Shusheng Xiong & Baoquan Sun & Ping Chen & Huipeng Chen & Shaopeng Zhu, 2025. "Research on Energy-Saving Control of Automotive PEMFC Thermal Management System Based on Optimal Operating Temperature Tracking," Energies, MDPI, vol. 18(15), pages 1-25, August.
    3. Guoyu Feng & Zhishu Feng & Peng Sun & Lulu Guo & Zhiyong Chen, 2025. "A Overview of Energy Management Strategies for Hybrid Power Systems," Energies, MDPI, vol. 18(17), pages 1-42, September.
    4. Dagang Lu & Yu Chen & Yan Sun & Wenxuan Wei & Shilin Ji & Hongshuo Ruan & Fengyan Yi & Chunchun Jia & Donghai Hu & Kunpeng Tang & Song Huang & Jing Wang, 2025. "Research Progress in Multi-Domain and Cross-Domain AI Management and Control for Intelligent Electric Vehicles," Energies, MDPI, vol. 18(17), pages 1-52, August.
    5. Chenghao Lyu & Nuo Lei & Chaoyi Chen & Hao Zhang, 2025. "A Hierarchical Evolutionary Search Framework with Manifold Learning for Powertrain Optimization of Flying Vehicles," Energies, MDPI, vol. 18(13), pages 1-20, June.
    6. Maiquiel Schmidt de Oliveira & Flavio Trojan & Vilmar Steffen, 2025. "Model for Definition of Multi-Criteria Compensation by the ICCI (Inter-Criteria Compensation Index) in the Ranking of Electric Vehicles," Energies, MDPI, vol. 18(21), pages 1-20, October.
    7. Monika Bortnowska & Arkadiusz Zmuda, 2025. "A Comparative Analysis of Hydrogen Fuel Cells and Internal Combustion Engines Used for Service Operation Vessels Propulsion," Energies, MDPI, vol. 18(19), pages 1-32, September.
    8. Tang, Tianfeng & Peng, Qianlong & Shi, Qing & Peng, Qingguo & Zhao, Jin & Chen, Chaoyi & Wang, Guangwei, 2024. "Energy management of fuel cell hybrid electric bus in mountainous regions: A deep reinforcement learning approach considering terrain characteristics," Energy, Elsevier, vol. 311(C).
    9. Muhammed Cavus & Huseyin Ayan & Margaret Bell & Dilum Dissanayake, 2025. "Advances in Energy Storage, AI Optimisation, and Cybersecurity for Electric Vehicle Grid Integration," Energies, MDPI, vol. 18(17), pages 1-33, August.
    10. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    11. Zhang, Yahui & You, Xiongxiong & Song, Yunfeng & Zhao, Yahui & Wei, Zeyi & Jiao, Xiaohong, 2025. "Hierarchical eco-driving of connected hybrid electric vehicles: Integrating predictive cruise control and cost-to-go approximation-guided energy management," Energy, Elsevier, vol. 319(C).
    12. Song, Dafeng & Wu, Qingtao & Zeng, Xiaohua & Zhang, Xuanming & Qian, Qifeng & Yang, DongPo, 2024. "Feedback-linearization decoupling based coordinated control of air supply and thermal management for vehicular fuel cell system," Energy, Elsevier, vol. 305(C).
    13. Li, Jianwei & Wang, Tianci & Yang, Qingqing & Tian, Zhonghao & Lv, Hong & Wang, Xuechao & Shen, Jun, 2025. "A safe region method to quantitatively evaluate the safety of fuel cell operating states," Applied Energy, Elsevier, vol. 377(PA).
    14. Yan Tong & Issam Salhi & Qin Wang & Gang Lu & Shengyu Wu, 2025. "Bidirectional DC-DC Converter Topologies for Hybrid Energy Storage Systems in Electric Vehicles: A Comprehensive Review," Energies, MDPI, vol. 18(9), pages 1-29, May.
    15. Jia, Chunchun & He, Hongwen & Zhou, Jiaming & Li, Jianwei & Wei, Zhongbao & Li, Kunang, 2023. "A novel health-aware deep reinforcement learning energy management for fuel cell bus incorporating offline high-quality experience," Energy, Elsevier, vol. 282(C).
    16. Nie, Zhigen & Feng, Yaxing & Lian, Yufeng, 2025. "Deep reinforcement learning-based hierarchical control strategy for energy management of intelligent fuel cell hybrid electric vehicles," Energy, Elsevier, vol. 326(C).
    17. Atif Rehman & Rimsha Ghias & Hammad Iqbal Sherazi, 2025. "Artificial Intelligence-Based Optimized Nonlinear Control for Multi-Source Direct Current Converters in Hybrid Electric Vehicle Energy Systems," Energies, MDPI, vol. 18(19), pages 1-26, September.
    18. Zhang, Baodi & Chang, Liang & Teng, Teng & Chen, Qifang & Li, Qiangwei & Cao, Yaoguang & Yang, Shichun & Zhang, Xin, 2024. "Multi-objective optimization with Q-learning for cruise and power allocation control parameters of connected fuel cell hybrid vehicles," Applied Energy, Elsevier, vol. 373(C).
    19. Li, Xue & Li, Minghai & Habibi, Mostafa & Najaafi, Neda & Safarpour, Hamed, 2023. "Optimization of hybrid energy management system based on high-energy solid-state lithium batteries and reversible fuel cells," Energy, Elsevier, vol. 283(C).
    20. Yang Shen & Jiaming Zhou & Jinming Zhang & Fengyan Yi & Guofeng Wang & Chaofeng Pan & Wei Guo & Xing Shu, 2023. "Research on Energy Management of Hydrogen Fuel Cell Bus Based on Deep Reinforcement Learning Considering Velocity Control," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5136-:d:1759447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.