Author
Listed:
- Md Fazle Hasan Shiblee
(School of Science and Technology, International Hellenic University, 14th km Thessaloniki-Moudania, 57001 Thessaloniki, Greece)
- Paraskevas Koukaras
(School of Science and Technology, International Hellenic University, 14th km Thessaloniki-Moudania, 57001 Thessaloniki, Greece)
Abstract
Accurate short-term electricity load forecasting is essential for efficient energy management, grid reliability, and cost optimization. This study presents a comprehensive comparison of five supervised learning models—Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), a hybrid (CNN-LSTM) architecture, and Light Gradient Boosting Machine (LightGBM)—using multivariate data from the Greek electricity market between 2015 and 2024. The dataset incorporates hourly load, temperature, humidity, and holiday indicators. Extensive preprocessing was applied, including K-Nearest Neighbor (KNN) imputation, time-based feature extraction, and normalization. Models were trained using a 70:20:10 train–validation–test split and evaluated with standard performance metrics: MAE, MSE, RMSE, NRMSE, MAPE, and R 2 . The experimental findings show that LightGBM beat deep learning (DL) models on all evaluation metrics and had the best MAE (69.12 MW), RMSE (101.67 MW), and MAPE (1.20%) and the highest R 2 (0.9942) for the test set. It also outperformed models in the literature and operational forecasts conducted in the real world by ENTSO-E. Though LSTM performed well, particularly in long-term dependency capturing, it performed a bit worse in high-variance periods. CNN, GRU, and hybrid models demonstrated moderate results, but they tended to underfit or overfit in some circumstances. These findings highlight the efficacy of LightGBM in structured time-series forecasting tasks, offering a scalable and interpretable alternative to DL models. This study supports its potential for real-world deployment in smart/distribution grid applications and provides valuable insights into the trade-offs between accuracy, complexity, and generalization in load forecasting models.
Suggested Citation
Md Fazle Hasan Shiblee & Paraskevas Koukaras, 2025.
"Short-Term Load Forecasting in the Greek Power Distribution System: A Comparative Study of Gradient Boosting and Deep Learning Models,"
Energies, MDPI, vol. 18(19), pages 1-27, September.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:19:p:5060-:d:1756411
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5060-:d:1756411. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.