Author
Listed:
- Meng-Hui Wang
(Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)
- Yi-Cheng Chen
(Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan)
- Chun-Chun Hung
(Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan)
Abstract
With the increasing penetration of renewable energy, power system frequency stability faces multiple challenges. In addition to the decline of system inertia traditionally provided by synchronous machines, uncertainties such as wind power forecast errors, converter control characteristics, and stochastic load fluctuations further exacerbate the system’s sensitivity to power disturbances, increasing the risks of frequency deviation and instability. Among these factors, insufficient inertia is widely recognized as one of the most direct and critical drivers of the initial frequency response. This study focuses on this issue and explores the use of battery energy storage system (BESS) parameter optimization to enhance system stability. To this end, a simulation platform was developed in PSS ® E V34 based on the IEEE New England 39-bus system, incorporating three wind turbines and two BESS units. The WECC generic models were adopted, and three wind disturbance scenarios were designed, including (i) disconnection of a single wind turbine, (ii) derating of two turbines to 50% output, and (iii) derating of three turbines to 50% output. In this study, a one-at-a-time (OAT) sensitivity analysis was first performed to identify the key parameters affecting frequency response, followed by optimization using an improved particle swarm optimization (IPSO) algorithm. The simulation results show that the minimum system frequency was 59.888 Hz without BESS control, increased to 59.969 Hz with non-optimized BESS control, and further improved to 59.976 Hz after IPSO. Compared with the case without BESS, the overall improvement was 0.088 Hz, of which IPSO contributed an additional 0.007 Hz. These results clearly demonstrate that IPSO can significantly strengthen the frequency support capability of BESS and effectively improve system stability under different wind disturbance scenarios.
Suggested Citation
Meng-Hui Wang & Yi-Cheng Chen & Chun-Chun Hung, 2025.
"Research on Adaptive Control Optimization of Battery Energy Storage System Under High Wind Energy Penetration,"
Energies, MDPI, vol. 18(19), pages 1-24, September.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:19:p:5057-:d:1756364
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5057-:d:1756364. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.