IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i19p5054-d1756224.html
   My bibliography  Save this article

Experimental Comparison of Water-Based Cooling Methods for PV Modules in Tropical Conditions

Author

Listed:
  • Nam Quyen Nguyen

    (Faculty of Engineering and Technology, Nong Lam University, Ho Chi Minh City 71308, Vietnam)

  • Hristo Ivanov Beloev

    (Agrarian and Industrial Faculty, University of Ruse, 7004 Ruse, Bulgaria)

  • Huy Bich Nguyen

    (Faculty of Engineering and Technology, Nong Lam University, Ho Chi Minh City 71308, Vietnam)

  • Van Lanh Nguyen

    (Faculty of Engineering and Technology, Nong Lam University, Ho Chi Minh City 71308, Vietnam)

Abstract

It is well known that temperature strongly affects the photovoltaic (PV) performance. Raising the working temperature leads to a significant decrease in PV output of the power capacity, and it also lowers power conversion efficiency. This issue is highly important for the PV systems operating in tropical climate areas such as southern Viet Nam. Developing the cooling methods applied for reducing the PV module temperature might be the solution to this problem and has attracted many researchers and industrial sectors. However, the existing research might not sufficiently address the comparative evaluation of multiple active water-based cooling methods on power conservation efficiency, power output, and cost implications under high-temperature conditions in tropical areas. This study is a case study that aims at conducting some experimental investigations for active water-based cooling methods applied to PV modules in Ho Chi Minh City, South Viet Nam. There are four active water-based cooling methods, including the spraying liquid method (SL), the dripping droplet method (DD), tube heat exchanger method (TE), and the liquid flowing on the PV surface method (LF), that have been developed and experimentally investigated. The voltage, current, temperature, and humidity of the PV cells have been automatically recorded in every one-minute interval via sensors and electronic devices. The experimental results indicate that the surface temperature, the power conversion efficiency, and the output power of PV module are developed toward the useful and positive direction with four cooling methods. In detail, the SL is the best one, in which it leads the PV temperature to reduce from 52 °C to 34–35 °C, the output power increases up to 6.3%, its power conversion efficiency improves up to 2%, while the water flow rate is at its lowest with 0.65 L/min. Similarly, LF also creates results that are similar to SL, but it needs a higher amount of cooling water, which is up to 3.27 L/min. The other methods, like DD and TE, have less power conversion efficiency compared to the SL; it improves only around 1 to 1.3%. These results might be useful for improving the benefits of PV power generation in some tropical regions and contributing to the green energy development in the world.

Suggested Citation

  • Nam Quyen Nguyen & Hristo Ivanov Beloev & Huy Bich Nguyen & Van Lanh Nguyen, 2025. "Experimental Comparison of Water-Based Cooling Methods for PV Modules in Tropical Conditions," Energies, MDPI, vol. 18(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5054-:d:1756224
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/19/5054/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/19/5054/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eleonora Riva Sanseverino & Hang Le Thi Thuy & Manh-Hai Pham & Maria Luisa Di Silvestre & Ninh Nguyen Quang & Salvatore Favuzza, 2020. "Review of Potential and Actual Penetration of Solar Power in Vietnam," Energies, MDPI, vol. 13(10), pages 1-25, May.
    2. Brahim Menacer & Nour El Houda Baghdous & Sunny Narayan & Moaz Al-lehaibi & Liomnis Osorio & Víctor Tuninetti, 2025. "Efficiency Enhancement of Photovoltaic Panels via Air, Water, and Porous Media Cooling Methods: Thermal–Electrical Modeling," Sustainability, MDPI, vol. 17(14), pages 1-22, July.
    3. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junlakarn, Siripha & Kittner, Noah & Tongsopit, Sopitsuda & Saelim, Supawan, 2021. "A cross-country comparison of compensation mechanisms for distributed photovoltaics in the Philippines, Thailand, and Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    3. Roy, S. & Lam, Y.F. & Hossain, M.U. & Chan, J.C.L., 2022. "Comprehensive evaluation of electricity generation and emission reduction potential in the power sector using renewable alternatives in Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    5. Kahoul, Nabil & Chenni, Rachid & Cheghib, Hocine & Mekhilef, Saad, 2017. "Evaluating the reliability of crystalline silicon photovoltaic modules in harsh environment," Renewable Energy, Elsevier, vol. 109(C), pages 66-72.
    6. Gan Huang & Jingyuan Xu & Christos N. Markides, 2023. "High-efficiency bio-inspired hybrid multi-generation photovoltaic leaf," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Wilson, Earle, 2009. "Theoretical and operational thermal performance of a ‘wet’ crystalline silicon PV module under Jamaican conditions," Renewable Energy, Elsevier, vol. 34(6), pages 1655-1660.
    8. Erdil, Erzat & Ilkan, Mustafa & Egelioglu, Fuat, 2008. "An experimental study on energy generation with a photovoltaic (PV)–solar thermal hybrid system," Energy, Elsevier, vol. 33(8), pages 1241-1245.
    9. Stropnik, Rok & Stritih, Uroš, 2016. "Increasing the efficiency of PV panel with the use of PCM," Renewable Energy, Elsevier, vol. 97(C), pages 671-679.
    10. Senturk, Ali, 2020. "Investigation of datasheet provided temperature coefficients of photovoltaic modules under various sky profiles at the field by applying a new validation procedure," Renewable Energy, Elsevier, vol. 152(C), pages 644-652.
    11. Hamed, Tareq Abu & Alshare, Aiman & El-Khalil, Hossam, 2019. "Passive cooling of building-integrated photovolatics in desert conditions: Experiment and modeling," Energy, Elsevier, vol. 170(C), pages 131-138.
    12. Abdmouleh, Zeineb & Alammari, Rashid A.M. & Gastli, Adel, 2015. "Recommendations on renewable energy policies for the GCC countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1181-1191.
    13. Mazzeo, Domenico & Ogliari, Emanuele & Lucchini, Andrea & Dolara, Alberto & Carraretto, Igor Matteo & Manzolini, Giampaolo & Colombo, Luigi Pietro Maria & Leva, Sonia, 2025. "Integration of photovoltaic modules with phase change materials: Experimental testing, model validation and optimization," Energy, Elsevier, vol. 319(C).
    14. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.
    15. Ngoc-Lan Huynh, Anh & Deo, Ravinesh C. & Ali, Mumtaz & Abdulla, Shahab & Raj, Nawin, 2021. "Novel short-term solar radiation hybrid model: Long short-term memory network integrated with robust local mean decomposition," Applied Energy, Elsevier, vol. 298(C).
    16. Jae Woo Ko & Hae Lim Cha & David Kwang-Soon Kim & Jong Rok Lim & Gyu Gwang Kim & Byeong Gwan Bhang & Chang Sub Won & Han Sang Jung & Dong Hyung Kang & Hyung Keun Ahn, 2017. "Safety Analysis of Grounding Resistance with Depth of Water for Floating PVs," Energies, MDPI, vol. 10(9), pages 1-12, September.
    17. Ren, Xiao & Li, Jing & Hu, Mingke & Pei, Gang & Jiao, Dongsheng & Zhao, Xudong & Ji, Jie, 2019. "Feasibility of an innovative amorphous silicon photovoltaic/thermal system for medium temperature applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Idris Al Siyabi & Arwa Al Mayasi & Aiman Al Shukaili & Sourav Khanna, 2021. "Effect of Soiling on Solar Photovoltaic Performance under Desert Climatic Conditions," Energies, MDPI, vol. 14(3), pages 1-18, January.
    19. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    20. Chia-Nan Wang & Van Tran Hoang Viet & Thanh Phong Ho & Van Thanh Nguyen & Syed Tam Husain, 2020. "Optimal Site Selection for a Solar Power Plant in the Mekong Delta Region of Vietnam," Energies, MDPI, vol. 13(16), pages 1-20, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:19:p:5054-:d:1756224. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.