IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4961-d1752548.html
   My bibliography  Save this article

Optimising Sustainable Home Energy Systems Amid Evolving Energy Market Landscape

Author

Listed:
  • Tomasz Siewierski

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 20, 90-537 Łódź, Poland)

  • Andrzej Wędzik

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 20, 90-537 Łódź, Poland)

  • Michał Szypowski

    (Institute of Electrical Power Engineering, Lodz University of Technology, Stefanowskiego Str. 20, 90-537 Łódź, Poland)

Abstract

The paper presents a linear optimisation model aimed at improving the design and operational efficiency of home energy systems (HESs). It focuses on integrating photovoltaic (PV) installations, hybrid heating systems, and emerging energy storage systems (ESSs). Driven by the EU climate policy and the evolution of the Polish electricity market, which have caused price volatility, the model examines the economic and technical feasibility of shifting detached and semi-detached houses towards low-emission or zero-emission energy self-sufficiency. The model simultaneously optimises the sizing and hourly operation of electricity and heat storage systems, using real-world data from PV output, electricity and gas consumption, and weather conditions. The key contributions include optimisation based on large data samples, evaluation of the synergy between a hybrid heating system with a gas boiler (GB) and a heat pump (HP), analysis of the impact of demand-side management (DSM), storage capacity decline, and comparison of commercial and emerging storage technologies such as lithium-ion batteries, redox flow batteries, and high-temperature thermal storage (HTS). Analysis of multiple scenarios based on three consecutive heating seasons and projected future conditions demonstrates that integrated PV and storage systems, when properly designed and optimally controlled, significantly lower energy costs for prosumers, enhance energy autonomy, and decrease CO 2 emissions. The results indicate that under current market conditions, Li-ion batteries and HTS provide the most economically viable storage options.

Suggested Citation

  • Tomasz Siewierski & Andrzej Wędzik & Michał Szypowski, 2025. "Optimising Sustainable Home Energy Systems Amid Evolving Energy Market Landscape," Energies, MDPI, vol. 18(18), pages 1-32, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4961-:d:1752548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4961/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4961/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poli, Nicola & Bonaldo, Cinzia & Moretto, Michele & Guarnieri, Massimo, 2024. "Techno-economic assessment of future vanadium flow batteries based on real device/market parameters," Applied Energy, Elsevier, vol. 362(C).
    2. Beaudin, Marc & Zareipour, Hamidreza, 2015. "Home energy management systems: A review of modelling and complexity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 318-335.
    3. Sebastiaan Mulder & Sikke Klein, 2024. "Techno-Economic Comparison of Electricity Storage Options in a Fully Renewable Energy System," Energies, MDPI, vol. 17(5), pages 1-32, February.
    4. Langer, Lissy & Volling, Thomas, 2020. "An optimal home energy management system for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 278(C).
    5. Qingguang Zhang & Mubasher Ikram & Kun Xu, 2024. "Online Optimization of Vehicle-to-Grid Scheduling to Mitigate Battery Aging," Energies, MDPI, vol. 17(7), pages 1-14, April.
    6. Jacek Brożyna & Wadim Strielkowski & Aleš Zpěvák, 2023. "Evaluating the Chances of Implementing the “Fit for 55” Green Transition Package in the V4 Countries," Energies, MDPI, vol. 16(6), pages 1-17, March.
    7. Tian, Y. & Zhao, C.Y., 2013. "A review of solar collectors and thermal energy storage in solar thermal applications," Applied Energy, Elsevier, vol. 104(C), pages 538-553.
    8. Chen, Xiaoling & Miller, Cory & Goutham, Mithun & Hanumalagutti, Prasad Dev & Blaser, Rachel & Stockar, Stephanie, 2024. "Development and evaluation of an online home energy management strategy for load coordination in smart homes with renewable energy sources," Energy, Elsevier, vol. 290(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    2. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    3. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    4. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    5. Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
    6. Zahid Kausar, A.S.M. & Reza, Ahmed Wasif & Saleh, Mashad Uddin & Ramiah, Harikrishnan, 2014. "Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 973-989.
    7. Aikifa Raza & Jin-You Lu & Safa Alzaim & Hongxia Li & TieJun Zhang, 2018. "Novel Receiver-Enhanced Solar Vapor Generation: Review and Perspectives," Energies, MDPI, vol. 11(1), pages 1-29, January.
    8. Marias, Foivos & Neveu, Pierre & Tanguy, Gwennyn & Papillon, Philippe, 2014. "Thermodynamic analysis and experimental study of solid/gas reactor operating in open mode," Energy, Elsevier, vol. 66(C), pages 757-765.
    9. Temiz, Mert & Dincer, Ibrahim, 2022. "A unique ocean and solar based multigenerational system with hydrogen production and thermal energy storage for Arctic communities," Energy, Elsevier, vol. 239(PB).
    10. Wang, Ruilin & Qu, Wanjun & Hong, Hui & Sun, Jie & Jin, Hongguang, 2018. "Experimental performance of 300 kWth prototype of parabolic trough collector with rotatable axis and irreversibility analysis," Energy, Elsevier, vol. 161(C), pages 595-609.
    11. Susana Devesa & Zohra Benzarti & Gabriel Santos & Diogo Cavaleiro & António Cunha & João Santos & Sandra Carvalho, 2024. "Enhancing Solar Absorption with Double-Layered Nickel Coatings and WS 2 Nanoparticles on Copper Substrates," Energies, MDPI, vol. 17(16), pages 1-16, August.
    12. Islam, Kazi & Riggs, Brian & Ji, Yaping & Robertson, John & Spitler, Christopher & Romanin, Vince & Codd, Daniel & Escarra, Matthew D., 2019. "Transmissive microfluidic active cooling for concentrator photovoltaics," Applied Energy, Elsevier, vol. 236(C), pages 906-915.
    13. Langer, Lissy & Volling, Thomas, 2022. "A reinforcement learning approach to home energy management for modulating heat pumps and photovoltaic systems," Applied Energy, Elsevier, vol. 327(C).
    14. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    15. Lauma Balode & Kristiāna Dolge & Dagnija Blumberga, 2021. "The Contradictions between District and Individual Heating towards Green Deal Targets," Sustainability, MDPI, vol. 13(6), pages 1-26, March.
    16. Chen, Meijie & He, Yurong & Zhu, Jiaqi & Wen, Dongsheng, 2016. "Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors," Applied Energy, Elsevier, vol. 181(C), pages 65-74.
    17. Lim, Jin Han & Nathan, Graham J. & Hu, Eric & Dally, Bassam B., 2016. "Analytical assessment of a novel hybrid solar tubular receiver and combustor," Applied Energy, Elsevier, vol. 162(C), pages 298-307.
    18. Kawaguchi, Takahiro & Sakai, Hiroki & Sheng, Nan & Kurniawan, Ade & Nomura, Takahiro, 2020. "Microencapsulation of Zn-Al alloy as a new phase change material for middle-high-temperature thermal energy storage applications," Applied Energy, Elsevier, vol. 276(C).
    19. Zhang, Shi-guang & Zhang, Hao & Xi, Xin-ming & Li, Bao-rang, 2025. "A review of design considerations and performance enhancement techniques for thermocline thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    20. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4961-:d:1752548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.