Author
Listed:
- Pedro Pontes
(IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)
- Vicente Andrade
(IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)
- Mariana Perez
(IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)
- Ana S. Moita
(IN+ Center for Innovation, Technology and Policy Research, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal)
Abstract
This study addresses the characterization of two-phase flow phenomena in a microchannel heat sink designed to cool high-concentration photovoltaic cells. Two-phase flows can introduce instabilities that affect heat exchange efficiency, a challenge intensified by the small dimensions of microchannels. A single polydimethylsiloxane (PDMS) microchannel was fixed on a stainless steel sheet, heated by the Joule effect, which was cooled by the working fluid HFE 7100 as it undergoes phase change. Experiments were performed using two microchannel widths with a fixed height and length, testing two heat fluxes and three values of the Reynolds number, within the laminar flow regime. Temperature and pressure drop data were collected alongside high-speed and time- and space-resolved thermal images, enabling the observation of flow boiling patterns and the identification of instabilities. Enhanced surfaces with microcavities depict a positive effect of a regular pattern of microcavities on the surface, increasing the heat transfer coefficient by 34–279% and promoting a more stable flow with decreased pressure losses.
Suggested Citation
Pedro Pontes & Vicente Andrade & Mariana Perez & Ana S. Moita, 2025.
"Flow Boiling in Microchannels Coupled with Surfaces Structured with Microcavities,"
Energies, MDPI, vol. 18(18), pages 1-20, September.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:18:p:4915-:d:1750307
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4915-:d:1750307. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.