IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i18p4892-d1749602.html
   My bibliography  Save this article

Cost-Effective Winding Strategy and Experimental Validation of a Real-Scale HTS Field Coil for 10 MW Class Wind Turbine Generators

Author

Listed:
  • Changhyun Kim

    (Future Core Technology R&D Division, Research Institute of Medium and Small Shipbuilding, Busan 46757, Republic of Korea)

Abstract

In this study, real-scale high-temperature superconducting (HTS) field coils for a 10 MW class rotating machine were designed, fabricated, and experimentally evaluated. The aim was to propose a cost-effective winding strategy by combining two types of HTS wires with different angular dependencies of critical current. The 3D FEM simulations were performed to determine the coil layout by considering the magnetic field magnitude and incidence angle. Based on this design, two HTS field coils were fabricated, one wound with two different types of wire and the other with a single wire type. For application to an actual HTS generator, the coil was equipped with an iron core to evaluate its influence on critical current and magnetic field distribution. Experimental results at 77 K showed that the coil combined with two types of HTS wire achieved 112 A without the core and 105 A with the core, while the single-wire coil reached 101 A and 93 A, respectively. The measured results showed good agreement with the simulations, with deviations within 3.7% for the combined-wire coil and 1.9% for the coil equipped with the iron core. These findings indicate that the proposed winding method can maintain high performance while lowering material cost, providing useful guidelines for the design of large-scale HTS rotating machines.

Suggested Citation

  • Changhyun Kim, 2025. "Cost-Effective Winding Strategy and Experimental Validation of a Real-Scale HTS Field Coil for 10 MW Class Wind Turbine Generators," Energies, MDPI, vol. 18(18), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4892-:d:1749602
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/18/4892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/18/4892/
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4892-:d:1749602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.