Author
Listed:
- Wenxi Zhang
(School of Economics and Management, Ningxia University, Yinchuan 750000, China)
- Nairong Tan
(School of Civil Engineering, Harbin Institute of Technology, Harbin 150000, China)
- Tao Ma
(Business School, Harbin Institute of Technology, Harbin 150000, China)
Abstract
To achieve deep decarbonization in the transportation sector, this study employs life cycle assessment (LCA) and the GREET model to construct baseline and low-carbon scenarios. It simulates the evolution of emissions and energy consumption within Inner Mongolia’s public transportation energy system (including diesel buses (DBs), electric buses (EBs), and hydrogen fuel cell buses (HFCBs)) from 2022 to 2035, while exploring synergistic pathways for its low-carbon transition. Results reveal that under the baseline scenario, reliance on industrial by-product hydrogen causes fuel cell bus emissions to increase by 3.64% in 2025 compared to 2022, with system energy savings below 10%, and decarbonization potential will be constrained by scale limitations and storage/transportation losses in cold regions. Under the low-carbon scenario, deep grid decarbonization, vehicle structure optimization, and green hydrogen integration reduced system emissions and energy consumption by 66.86% and 40.44%, respectively, compared to 2022. The study identifies a 15% green hydrogen penetration rate as the critical threshold for resource misallocation and confirms grid decarbonization as the top-priority policy tool, yielding marginal benefits 1.43 times greater than standalone hydrogen policies. This study underscores the importance of multi-policy coordination and ‘technology-supply chain’ synergy, particularly highlighting the critical threshold of green hydrogen penetration and the primacy of grid decarbonization, offering insights for similar coal-dominated, cold-region transportation energy transitions.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4817-:d:1746449. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.