Author
Listed:
- Penghui Xiao
(School of Civil Engineering and Transportation, Institute of Artificial Environment Control and Energy Application, Northeast Forestry University, Harbin 150040, China)
- Xuan Zhang
(School of Civil Engineering and Transportation, Institute of Artificial Environment Control and Energy Application, Northeast Forestry University, Harbin 150040, China)
- Xuemei Wang
(School of Civil Engineering and Transportation, Institute of Artificial Environment Control and Energy Application, Northeast Forestry University, Harbin 150040, China)
Abstract
To ensure the safe and reliable operation of hydrogen-blended natural gas (HBNG) pipelines in urban utility tunnels, this study conducted a comprehensive CFD simulation of the leakage and diffusion characteristics of HBNG in confined underground environments. Utilizing ANSYS CFD software (2024R1), a three-dimensional physical model of a utility tunnel was developed to investigate the influence of key parameters, such as leak sizes (4 mm, 6 mm, and 8 mm)—selected based on common small-orifice defects in utility tunnel pipelines (e.g., corrosion-induced pinholes and minor mechanical damage) and hydrogen blending ratios (HBR) ranging from 0% to 20%—a range aligned with current global HBNG demonstration projects (e.g., China’s “Medium-Term and Long-Term Plan for Hydrogen Energy Industry Development”) and ISO standards prioritizing 20% as a technically feasible upper limit for existing infrastructure, on HBNG diffusion behavior. The study also evaluated the adequacy of current accident ventilation standards. The findings show that as leak orifice size increases, the diffusion range of HBNG expands significantly, with a 31.5% increase in diffusion distance and an 18.5% reduction in alarm time as the orifice diameter grows from 4 mm to 8 mm. Furthermore, hydrogen blending accelerates gas diffusion, with each 5% increase in HBR shortening the alarm time by approximately 1.6 s and increasing equilibrium concentrations by 0.4% vol. The current ventilation standard (12 h −1 ) was found to be insufficient to suppress concentrations below the 1% safety threshold when the HBR exceeds 5% or the orifice diameter exceeds 4 mm—thresholds derived from simulations showing that, under 12 h −1 ventilation, equilibrium concentrations exceed the 1% safety threshold under these conditions. To address these gaps, this study proposes an adaptive ventilation strategy that uses variable-frequency drives to adjust ventilation rates in real time based on sensor feedback of gas concentrations, ensuring alignment with leakage conditions, thereby ensuring enhanced safety. These results provide crucial theoretical insights for the safe design of HBNG pipelines and ventilation optimization in utility tunnels.
Suggested Citation
Penghui Xiao & Xuan Zhang & Xuemei Wang, 2025.
"Hydrogen-Blended Natural Gas Leakage and Diffusion Characteristics Simulation and Ventilation Strategy in Utility Tunnels,"
Energies, MDPI, vol. 18(17), pages 1-17, August.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:17:p:4504-:d:1732112
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4504-:d:1732112. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.