IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3854-d1705691.html
   My bibliography  Save this article

A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings

Author

Listed:
  • Ruey-Lung Hwang

    (Department of Industrial Technology Education, National Kaohsiung Normal University, Kaohsiung 824004, Taiwan)

  • Hung-Chi Chiu

    (Department of Industrial Technology Education, National Kaohsiung Normal University, Kaohsiung 824004, Taiwan)

Abstract

Nearly zero-energy buildings (nZEBs) are central to global carbon reduction strategies, and Taiwan is actively promoting their adoption through building energy performance labeling, particularly in the retrofit of existing buildings. Under Taiwan’s nZEB framework, qualification requires both an A + energy performance label and over 50% energy savings from retrofit technologies. This study proposes an integrated assessment framework for retrofitting small- to medium-sized office buildings into nZEBs, incorporating diagnostics, technical evaluation, policy alignment, and resource integration. A case study of a bank branch in Kaohsiung involved on-site energy monitoring and EnergyPlus V22.2 simulations to calibrate and assess the retrofit impacts. Lighting improvements and two HVAC scenarios—upgrading the existing fan coil unit (FCU) system and adopting a completely new variable refrigerant flow (VRF) system—were evaluated. The FCU and VRF scenarios reduced the energy use intensity from 141.3 to 82.9 and 72.9 kWh/m 2 ·yr, respectively. Combined with rooftop photovoltaics and green power procurement, both scenarios met Taiwan’s nZEB criteria. The proposed framework demonstrates practical and scalable strategies for decarbonizing existing office buildings, supporting Taiwan’s 2050 net-zero target.

Suggested Citation

  • Ruey-Lung Hwang & Hung-Chi Chiu, 2025. "A Case Study-Based Framework Integrating Simulation, Policy, and Technology for nZEB Retrofits in Taiwan’s Office Buildings," Energies, MDPI, vol. 18(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3854-:d:1705691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammad Y. AbuGrain & Halil Z. Alibaba, 2017. "Optimizing Existing Multistory Building Designs towards Net-Zero Energy," Sustainability, MDPI, vol. 9(3), pages 1-15, March.
    2. Ilaria Ballarini & Giovanna De Luca & Argun Paragamyan & Anna Pellegrino & Vincenzo Corrado, 2019. "Transformation of an Office Building into a Nearly Zero Energy Building (nZEB): Implications for Thermal and Visual Comfort and Energy Performance," Energies, MDPI, vol. 12(5), pages 1-18, March.
    3. Cozza, Stefano & Chambers, Jonathan & Patel, Martin K., 2020. "Measuring the thermal energy performance gap of labelled residential buildings in Switzerland," Energy Policy, Elsevier, vol. 137(C).
    4. AlAjmi, Ali & Abou-Ziyan, Hosny & Ghoneim, Adel, 2016. "Achieving annual and monthly net-zero energy of existing building in hot climate," Applied Energy, Elsevier, vol. 165(C), pages 511-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saman Abolghasemi Moghaddam & Nuno Simões & Michael Brett & Manuel Gameiro da Silva & Joana Prata, 2025. "Dynamic Behavior of a Glazing System and Its Impact on Thermal Comfort: Short-Term In Situ Assessment and Machine Learning-Based Predictive Modeling," Energies, MDPI, vol. 18(17), pages 1-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.
    2. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    3. Giacomo Chiesa & Paolo Carrisi, 2025. "Pre- and Post-Self-Renovation Variations in Indoor Temperature: Methodological Pipeline and Cloud Monitoring Results in Two Small Residential Buildings," Energies, MDPI, vol. 18(15), pages 1-28, July.
    4. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    5. Giraudet, Louis-Gaëtan & Bourgeois, Cyril & Quirion, Philippe, 2021. "Policies for low-carbon and affordable home heating: A French outlook," Energy Policy, Elsevier, vol. 151(C).
    6. Krzysztof Wąs & Jan Radoń & Agnieszka Sadłowska-Sałęga, 2020. "Maintenance of Passive House Standard in the Light of Long-Term Study on Energy Use in a Prefabricated Lightweight Passive House in Central Europe," Energies, MDPI, vol. 13(11), pages 1-22, June.
    7. Dominković, D.F. & Bin Abdul Rashid, K.A. & Romagnoli, A. & Pedersen, A.S. & Leong, K.C. & Krajačić, G. & Duić, N., 2017. "Potential of district cooling in hot and humid climates," Applied Energy, Elsevier, vol. 208(C), pages 49-61.
    8. Pierryves Padey & Kyriaki Goulouti & Guy Wagner & Blaise Périsset & Sébastien Lasvaux, 2021. "Understanding the Reasons behind the Energy Performance Gap of an Energy-Efficient Building, through a Probabilistic Approach and On-Site Measurements," Energies, MDPI, vol. 14(19), pages 1-15, September.
    9. Bourgeois, Cyril & Giraudet, Louis-Gaëtan & Quirion, Philippe, 2021. "Lump-sum vs. energy-efficiency subsidy recycling of carbon tax revenue in the residential sector: A French assessment," Ecological Economics, Elsevier, vol. 184(C).
    10. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    11. Coyne, Bryan & Denny, Eleanor, 2021. "Retrofit effectiveness: Evidence from a nationwide residential energy efficiency programme," Energy Policy, Elsevier, vol. 159(C).
    12. Bai, Yefei & Yu, Cong & Pan, Wei, 2024. "Systematic examination of energy performance gap in low-energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    13. ChungYeon Won & SangTae No & Qamar Alhadidi, 2019. "Factors Affecting Energy Performance of Large-Scale Office Buildings: Analysis of Benchmarking Data from New York City and Chicago," Energies, MDPI, vol. 12(24), pages 1-17, December.
    14. Peñasco, Cristina & Anadón, Laura Díaz, 2023. "Assessing the effectiveness of energy efficiency measures in the residential sector gas consumption through dynamic treatment effects: Evidence from England and Wales," Energy Economics, Elsevier, vol. 117(C).
    15. Al-Saadi, Saleh Nasser & Shaaban, Awni K., 2019. "Zero energy building (ZEB) in a cooling dominated climate of Oman: Design and energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 299-316.
    16. Gilani, Hooman Azad & Hoseinzadeh, Siamak & Karimi, Hirou & Karimi, Ako & Hassanzadeh, Amir & Garcia, Davide Astiaso, 2021. "Performance analysis of integrated solar heat pump VRF system for the low energy building in Mediterranean island," Renewable Energy, Elsevier, vol. 174(C), pages 1006-1019.
    17. Gianluca Cadelano & Francesco Cicolin & Giuseppe Emmi & Giulia Mezzasalma & Davide Poletto & Antonio Galgaro & Adriana Bernardi, 2019. "Improving the Energy Efficiency, Limiting Costs and Reducing CO 2 Emissions of a Museum Using Geothermal Energy and Energy Management Policies," Energies, MDPI, vol. 12(16), pages 1-18, August.
    18. Cristina Carletti & Leone Pierangioli & Fabio Sciurpi & Andrea Salvietti, 2018. "Comparison among Detailed and Simplified Calculation Methods for Thermal and Energy Assessment of the Building Envelope and the Shadings of a New Wooden nZEB House," Sustainability, MDPI, vol. 10(2), pages 1-21, February.
    19. Li, Y. & Arulnathan, V. & Heidari, M.D. & Pelletier, N., 2022. "Design considerations for net zero energy buildings for intensive, confined poultry production: A review of current insights, knowledge gaps, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Hana Begić Juričić & Hrvoje Krstić & Mihaela Domazetović, 2025. "Analyzing the Carbon Performance Gap and Thermal Energy Performance Gap of School Buildings in Osijek-Baranja County, Croatia," Energies, MDPI, vol. 18(7), pages 1-21, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3854-:d:1705691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.