Author
Listed:
- Hui Li
(School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)
- Xianglong Bai
(School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)
- Hua Li
(Electric Power Research Institute of State Grid Shaanxi Electric Power Company, Xi’an 710100, China)
- Liang Bai
(College of Hydraulic and Hydropower Engineering, Xi’an University of Technology, Xi’an 710048, China)
Abstract
To reduce carbon emission levels and improve the low-carbon performance and economic efficiency of Integrated Energy Systems (IESs), this paper introduces oxy-fuel combustion technology to transform traditional units and proposes a low-carbon economic dispatch method. Considering the stepwise carbon trading mechanism, it provides new ideas for promoting energy conservation, emission reduction, and economic operation of integrated energy systems from both technical and policy perspectives. Firstly, the basic principles and energy flow characteristics of oxy-fuel combustion technology are studied, and a model including an air separation unit, an oxygen storage tank, and carbon capture equipment is constructed. Secondly, a two-stage power-to-gas (P2G) model is established to build a joint operation framework for oxy-fuel combustion and P2G. On this basis, a stepwise carbon trading mechanism is introduced to further constrain the carbon emissions of the system, and a low-carbon economic dispatch model with the objective of minimizing the total system operation cost is established. Finally, multiple scenarios are set up for simulation analysis, which verifies that the proposed low-carbon economic optimal dispatch strategy can effectively reduce the system operation cost by approximately 21.4% and improve the system’s carbon emission level with a total carbon emission reduction of about 38.3%. Meanwhile, the introduction of the stepwise carbon trading mechanism reduces the total cost by 12.3% and carbon emissions by 2010.19 tons, increasing the carbon trading revenue.
Suggested Citation
Hui Li & Xianglong Bai & Hua Li & Liang Bai, 2025.
"Optimal Scheduling of Integrated Energy Systems Considering Oxy-Fuel Power Plants and Carbon Trading,"
Energies, MDPI, vol. 18(14), pages 1-23, July.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:14:p:3814-:d:1704035
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3814-:d:1704035. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.