Author
Listed:
- Peng Dou
(EVE Energy Co., Ltd., Huizhou 516006, China)
- Pengcheng Liu
(EVE Energy Co., Ltd., Huizhou 516006, China)
- Zhiyong Yu
(School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China)
Abstract
To enhance the specific energy and rate performance of lithium primary batteries, the development of advanced cathode materials with superior electrochemical properties is essential. Fluorides, composed of light fluorine elements and multivalent cations, exhibit multi-electron reaction characteristics, possess a high theoretical voltage, and demonstrate high discharge-specific energy. However, owing to fluorine’s high electronegativity, which leads to the formation of strong ionic bonds with other elements, most fluorides exhibit poor electronic conductivity, thereby constraining their electrochemical performance when used as cathode materials. Copper fluoride (CuF 2 ) exhibits a high theoretical specific capacity and discharge voltage but is constrained by its large bandgap, poor electronic conductivity, and difficulties in synthesizing anhydrous CuF 2 materials, which significantly limit its electrochemical activity. In this study, zinc (Zn) was chosen as a dopant for copper fluoride. By combining theoretical calculations with experimental validation, the impacts of Zn doping on the structural stability and electrochemical performance of copper fluoride were comprehensively analyzed. The resultant highly active Zn-doped copper fluoride achieved a discharge specific capacity of 528.6 mAh/g at 0.1 C and 489.1 mAh/g at 1 C, showcasing superior discharge-specific energy and good rate performance. This material holds great potential as a promising cathode candidate for lithium batteries, providing both high specific energy and power density.
Suggested Citation
Peng Dou & Pengcheng Liu & Zhiyong Yu, 2025.
"Preparation and Electrochemical Performance of Zinc-Doped Copper Fluoride,"
Energies, MDPI, vol. 18(14), pages 1-14, July.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:14:p:3752-:d:1702247
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3752-:d:1702247. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.