IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3607-d1697405.html
   My bibliography  Save this article

A Fully Coupled Numerical Simulation Model for Bottom-Water Gas Reservoirs Integrating Horizontal Wellbore, ICD Screens, and Zonal Water Control: Development, Validation, and Optimization Strategies

Author

Listed:
  • Yongsheng An

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Zhongwen Sun

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Yiran Kang

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

  • Guangning Yang

    (MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China)

Abstract

To address the challenges of water coning and early water breakthrough commonly encountered during the development of bottom-water gas reservoirs, this study establishes a fully coupled numerical simulation model integrating a horizontal wellbore, inflow control device (ICD) screens, and a zonal water control system. A novel “dual inflow performance index” method is introduced for the first time, enabling separate calculation of the pressure drops induced by gas and water phases flowing through the ICDs, thereby improving the accuracy of pressure simulations throughout the production lifecycle. The model divides the entire production system into four physically distinct subsystems, the bottom-water gas reservoir, ICD screens, production compartments, and the horizontal wellbore, which are dynamically coupled through transient interflow exchange. Based on geological parameters from the SPE10 dataset, the model simulates realistic production scenarios. The results show that the proposed model accurately captures the time-dependent increase in ICD pressure drop as fluid properties evolve during production. Moreover, the zonal water control method outperforms the single ICD-based control strategy in water control performance, achieving a 23% reduction in cumulative water production. Additionally, the water control intensity of the ICD screens increases nonlinearly with the reduction in the number of openings. In highly heterogeneous reservoirs with significant permeability contrast, effective suppression of water coning can only be achieved by setting a minimal number of openings in the high-permeability compartments, resulting in up to a 15% reduction in cumulative water production. The timing of production compartment shutdown exerts a significant influence on water control performance. The optimal strategy is to first identify the water breakthrough point through unconstrained production simulation as production with all eight ICD screen openings fully open and then shut down the high-permeability production compartment around this critical time. This approach can suppress cumulative water production by up to 27%. Overall, the proposed model offers a practical and robust tool for optimizing completion design and water control strategies in complex bottom-water gas reservoirs.

Suggested Citation

  • Yongsheng An & Zhongwen Sun & Yiran Kang & Guangning Yang, 2025. "A Fully Coupled Numerical Simulation Model for Bottom-Water Gas Reservoirs Integrating Horizontal Wellbore, ICD Screens, and Zonal Water Control: Development, Validation, and Optimization Strategies," Energies, MDPI, vol. 18(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3607-:d:1697405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3607/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3607/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3607-:d:1697405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.