IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i14p3591-d1696934.html
   My bibliography  Save this article

A Review of Optimization Methods for Pipeline Monitoring Systems: Applications and Challenges for CO 2 Transport

Author

Listed:
  • Teke Xu

    (Department of Chemical Engineering, University College London, Gower Street, London WC1E 7JE, UK)

  • Sergey Martynov

    (Department of Chemical Engineering, University College London, Gower Street, London WC1E 7JE, UK)

  • Haroun Mahgerefteh

    (Department of Chemical Engineering, University College London, Gower Street, London WC1E 7JE, UK)

Abstract

Carbon Capture and Storage (CCS) is a key technology for reducing anthropogenic greenhouse gas emissions, in which pipelines play a vital role in transporting CO 2 captured from industrial emitters to geological storage sites. To aid the efficient and safe operation of the CO 2 transport infrastructure, robust, accurate, and reliable solutions for monitoring pipelines transporting industrial CO 2 streams are urgently needed. This literature review study summarizes the monitoring objectives and identifies the problems and relevant mathematical algorithms developed for optimization of monitoring systems for pipeline transportation of water, oil, and natural gas, which can be relevant to the future CO 2 pipelines and pipeline networks for CCS. The impacts of the physical properties of CO 2 and complex designs and operation scenarios of CO 2 transport on the pipeline monitoring systems design are discussed. It is shown that the most relevant to liquid- and dense-phase CO 2 transport are the sensor placement optimization methods developed in the context of detecting leaks and flow anomalies for water distribution systems and pipelines transporting oil and petroleum liquids. The monitoring solutions relevant to flow assurance and monitoring impurities in CO 2 pipelines are also identified. Optimizing the CO 2 pipeline monitoring systems against several objectives, including the accuracy of measurements, the number and type of sensors, and the safety and environmental risks, is discussed.

Suggested Citation

  • Teke Xu & Sergey Martynov & Haroun Mahgerefteh, 2025. "A Review of Optimization Methods for Pipeline Monitoring Systems: Applications and Challenges for CO 2 Transport," Energies, MDPI, vol. 18(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3591-:d:1696934
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/14/3591/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/14/3591/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Di & Gong, Jing & Zhang, Shengnan & Shi, Guoyun & Kang, Qi & Xiao, Yaqi & Wu, Changchun, 2021. "A transient composition tracking method for natural gas pipe networks," Energy, Elsevier, vol. 215(PA).
    2. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qian & Guan, Aocheng & Chen, Feng & Huang, Wei & Jin, Antai & Gadalla, Mamdouh & Wang, Bohong, 2024. "A transient gas pipeline network simulation model for decoupling the hydraulic-thermal process and the component tracking process," Energy, Elsevier, vol. 301(C).
    2. Gong, Junhua & Shi, Guoyun & Wang, Shaobo & Wang, Peng & Chen, Bin & Chen, Yujie & Wang, Bohong & Yu, Bo & Jiang, Weixin & Li, Zongze, 2024. "Efficient super-resolution of pipeline transient process modeling using the Fourier Neural Operator," Energy, Elsevier, vol. 302(C).
    3. Chen, Qian & Guan, Aocheng & Wen, Ya & Chen, Feng & Wang, Bohong & Sun, Chengwei & Zuo, Lili, 2025. "An efficient parallel dynamic component tracking model of gas networks by decoupling hydraulic, thermal, and convection-diffusion processes," Energy, Elsevier, vol. 320(C).
    4. Kai Wen & Hailong Xu & Wei Qi & Haichuan Li & Yichen Li & Bingyuan Hong, 2023. "Heat Transfer Model of Natural Gas Pipeline Based on Data Feature Extraction and First Principle Models," Energies, MDPI, vol. 16(3), pages 1-21, January.
    5. Vadim Fetisov & Aleksey V. Shalygin & Svetlana A. Modestova & Vladimir K. Tyan & Changjin Shao, 2022. "Development of a Numerical Method for Calculating a Gas Supply System during a Period of Change in Thermal Loads," Energies, MDPI, vol. 16(1), pages 1-16, December.
    6. Wen, Kai & Jiao, Jianfeng & Zhao, Kang & Yin, Xiong & Liu, Yuan & Gong, Jing & Li, Cuicui & Hong, Bingyuan, 2023. "Rapid transient operation control method of natural gas pipeline networks based on user demand prediction," Energy, Elsevier, vol. 264(C).
    7. Li, Xiaoping & Yang, Qi & Xie, Xugang & Chen, Sihang & Pan, Chen & He, Zhouying & Gong, Jing & Hong, Bingyuan, 2023. "Spatiotemporal simulation of gas-liquid transport in the production process of continuous undulating pipelines," Energy, Elsevier, vol. 278(PA).
    8. Zhou, Dengji & Jia, Xingyun & Ma, Shixi & Shao, Tiemin & Huang, Dawen & Hao, Jiarui & Li, Taotao, 2022. "Dynamic simulation of natural gas pipeline network based on interpretable machine learning model," Energy, Elsevier, vol. 253(C).
    9. Dancker, Jonte & Wolter, Martin, 2022. "A coupled transient gas flow calculation with a simultaneous calorific-value-gradient improved hydrogen tracking," Applied Energy, Elsevier, vol. 316(C).
    10. Qi, Shikun & Zhao, Wei & Qiu, Rui & Liu, Chunying & Li, Zhuochao & Lan, Hao & Liang, Yongtu, 2023. "Capacity allocation method of hydrogen-blending natural gas pipeline network based on bilevel optimization," Energy, Elsevier, vol. 285(C).
    11. Koo, Bonchan & Chang, Seungjoon & Kwon, Hweeung, 2023. "Digital twin for natural gas infrastructure operation and management via streaming dynamic mode decomposition with control," Energy, Elsevier, vol. 274(C).
    12. Qiao Guo & Yuan Liu & Yunbo Yang & Tao Song & Shouxi Wang, 2022. "Improved Adaptive Time Step Method for Natural Gas Pipeline Transient Simulation," Energies, MDPI, vol. 15(14), pages 1-14, July.
    13. Hong, Bingyuan & Li, Xiaoping & Li, Yu & Chen, Shilin & Tan, Yao & Fan, Di & Song, Shangfei & Zhu, Baikang & Gong, Jing, 2022. "An improved hydraulic model of gathering pipeline network integrating pressure-exchange ejector," Energy, Elsevier, vol. 260(C).
    14. Bermúdez, Alfredo & Shabani, Mohsen, 2022. "Numerical simulation of gas composition tracking in a gas transportation network," Energy, Elsevier, vol. 247(C).
    15. Yin, Xiong & Wen, Kai & Huang, Weihe & Luo, Yinwei & Ding, Yi & Gong, Jing & Gao, Jianfeng & Hong, Bingyuan, 2023. "A high-accuracy online transient simulation framework of natural gas pipeline network by integrating physics-based and data-driven methods," Applied Energy, Elsevier, vol. 333(C).
    16. Koo, Bonchan & Ha, Youngcheol & Kwon, Hweeung, 2023. "Preliminary evaluation of hydrogen blending into high-pressure natural gas pipelines through hydraulic analysis," Energy, Elsevier, vol. 268(C).
    17. Wang, Chen & Zhou, Dengji & Wang, Xiaoguo & Liu, Song & Shao, Tiemin & Shui, Chongyuan & Yan, Jun, 2024. "Multiscale graph based spatio-temporal graph convolutional network for energy consumption prediction of natural gas transmission process," Energy, Elsevier, vol. 307(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3591-:d:1696934. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.