IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3560-d1695845.html
   My bibliography  Save this article

Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study

Author

Listed:
  • Pattanun Chanpiwat

    (Department of Graduate Studies, Command and General Staff College, Royal Thai Army, 820/1 Rama V Rd., Nakhon-Chai-Si Road, Dusit, Bangkok 10300, Thailand
    Department of Civil Engineering, Chulachomklao Royal Military Academy, Nakhon Nayok 26001, Thailand)

  • Fabricio Oliveira

    (Department Mathematics and Systems Analysis, School of Science, Aalto University, FI-00076 Espoo, Finland)

  • Steven A. Gabriel

    (Department Mathematics and Systems Analysis, School of Science, Aalto University, FI-00076 Espoo, Finland
    Applied Mathematics & Statistics, and Scientific Computation Program, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
    Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

Abstract

This study introduces a novel approach for optimizing residential energy systems by combining linear policy graphs with stochastic dual dynamic programming (SDDP) algorithms. Our method optimizes residential solar power generation and battery storage systems, reducing costs through strategic charging and discharging patterns. Using stylized test data, we evaluate battery storage optimization strategies by comparing various SDDP model configurations against a linear programming (LP) benchmark model. The SDDP optimization framework demonstrates robust performance in battery operation management, efficiently handling diverse pricing scenarios while maintaining computational efficiency. Our analysis reveals that the SDDP model achieves positive financial returns with small-scale battery installations, even in scenarios with limited photovoltaic generation capacity. The results confirm both the economic viability and environmental benefits of residential solar–battery systems through two key strategies: aligning battery charging with renewable energy availability and shifting energy consumption away from peak periods. The SDDP framework proves effective in managing battery operations across dynamic pricing scenarios, achieving performance comparable to LP methods while handling uncertainties in PV generation, consumption, and pricing.

Suggested Citation

  • Pattanun Chanpiwat & Fabricio Oliveira & Steven A. Gabriel, 2025. "Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study," Energies, MDPI, vol. 18(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3560-:d:1695845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178, Decembrie.
    2. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    3. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    3. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    4. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    5. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    6. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    7. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    8. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    9. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    10. Tsionas, Mike G., 2021. "Bayesian forecasting with the structural damped trend model," International Journal of Production Economics, Elsevier, vol. 234(C).
    11. Tommaso Proietti, 2002. "Some Reflections on Trend-Cycle Decompositions with Correlated Components," Econometrics 0209002, University Library of Munich, Germany.
    12. Tobias Hartl & Roland Jucknewitz, 2022. "Approximate state space modelling of unobserved fractional components," Econometric Reviews, Taylor & Francis Journals, vol. 41(1), pages 75-98, January.
    13. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    14. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    15. Oreste Napolitano & Alberto Montagnoli, 2010. "The European Unemployment Gap and the Role of Monetary Policy," Economics Bulletin, AccessEcon, vol. 30(2), pages 1346-1358.
    16. Chan Joshua & Doucet Arnaud & León-González Roberto & Strachan Rodney W., 2025. "Multivariate Stochastic Volatility with Co-Heteroscedasticity," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 29(3), pages 265-300.
    17. Siem Jan Koopman & Joao Valle e Azevedo, 2003. "Measuring Synchronisation and Convergence of Business Cycles," Tinbergen Institute Discussion Papers 03-052/4, Tinbergen Institute.
    18. Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009. "Real-Time Measurement of Business Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
    19. Omar H. M. N. Bashar, 2015. "The Trickle‐down Effect of the Mining Boom in Australia: Fact or Myth?," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 94-108, June.
    20. Funke, Michael & Tsang, Andrew, 2019. "The direction and intensity of China's monetary policy conduct: A dynamic factor modelling approach," BOFIT Discussion Papers 8/2019, Bank of Finland Institute for Emerging Economies (BOFIT).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3560-:d:1695845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.