IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3560-d1695845.html
   My bibliography  Save this article

Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study

Author

Listed:
  • Pattanun Chanpiwat

    (Department of Graduate Studies, Command and General Staff College, Royal Thai Army, 820/1 Rama V Rd., Nakhon-Chai-Si Road, Dusit, Bangkok 10300, Thailand
    Department of Civil Engineering, Chulachomklao Royal Military Academy, Nakhon Nayok 26001, Thailand)

  • Fabricio Oliveira

    (Department Mathematics and Systems Analysis, School of Science, Aalto University, FI-00076 Espoo, Finland)

  • Steven A. Gabriel

    (Department Mathematics and Systems Analysis, School of Science, Aalto University, FI-00076 Espoo, Finland
    Applied Mathematics & Statistics, and Scientific Computation Program, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
    Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway)

Abstract

This study introduces a novel approach for optimizing residential energy systems by combining linear policy graphs with stochastic dual dynamic programming (SDDP) algorithms. Our method optimizes residential solar power generation and battery storage systems, reducing costs through strategic charging and discharging patterns. Using stylized test data, we evaluate battery storage optimization strategies by comparing various SDDP model configurations against a linear programming (LP) benchmark model. The SDDP optimization framework demonstrates robust performance in battery operation management, efficiently handling diverse pricing scenarios while maintaining computational efficiency. Our analysis reveals that the SDDP model achieves positive financial returns with small-scale battery installations, even in scenarios with limited photovoltaic generation capacity. The results confirm both the economic viability and environmental benefits of residential solar–battery systems through two key strategies: aligning battery charging with renewable energy availability and shifting energy consumption away from peak periods. The SDDP framework proves effective in managing battery operations across dynamic pricing scenarios, achieving performance comparable to LP methods while handling uncertainties in PV generation, consumption, and pricing.

Suggested Citation

  • Pattanun Chanpiwat & Fabricio Oliveira & Steven A. Gabriel, 2025. "Integrated Operational Planning of Battery Storage Systems for Improved Efficiency in Residential Community Energy Management Using Multistage Stochastic Dual Dynamic Programming: A Finnish Case Study," Energies, MDPI, vol. 18(13), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3560-:d:1695845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Denholm, Paul & Nunemaker, Jacob & Gagnon, Pieter & Cole, Wesley, 2020. "The potential for battery energy storage to provide peaking capacity in the United States," Renewable Energy, Elsevier, vol. 151(C), pages 1269-1277.
    2. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    3. Puranen, Pietari & Kosonen, Antti & Ahola, Jero, 2021. "Techno-economic viability of energy storage concepts combined with a residential solar photovoltaic system: A case study from Finland," Applied Energy, Elsevier, vol. 298(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Victor Bystrov, 2018. "Measuring the Natural Rates of Interest in Germany and Italy," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(4), pages 333-353, December.
    2. Yukai Yang & Luc Bauwens, 2018. "State-Space Models on the Stiefel Manifold with a New Approach to Nonlinear Filtering," Econometrics, MDPI, vol. 6(4), pages 1-22, December.
    3. Fernández-Macho, Javier, 2008. "Spectral estimation of a structural thin-plate smoothing model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 189-195, September.
    4. Drew Creal & Siem Jan Koopman & Eric Zivot, 2008. "The Effect of the Great Moderation on the U.S. Business Cycle in a Time-varying Multivariate Trend-cycle Model," Tinbergen Institute Discussion Papers 08-069/4, Tinbergen Institute.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    6. Tomoya Mori & Daisuke Murakami, 2025. "Sustainability of cities under declining population and decreasing distance frictions: The case of Japan," KIER Working Papers 1117, Kyoto University, Institute of Economic Research.
    7. François R. Velde, 2009. "Chronicle of a Deflation Unforetold," Journal of Political Economy, University of Chicago Press, vol. 117(4), pages 591-634, August.
    8. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    9. repec:zbw:bofitp:2019_008 is not listed on IDEAS
    10. Yue Zhao & Difang Wan, 2018. "Institutional high frequency trading and price discovery: Evidence from an emerging commodity futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(2), pages 243-270, February.
    11. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    12. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    13. repec:spo:wpmain:info:hdl:2441/1904 is not listed on IDEAS
    14. Hári, Norbert & De Waegenaere, Anja & Melenberg, Bertrand & Nijman, Theo E., 2008. "Estimating the term structure of mortality," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 492-504, April.
    15. Brave, Scott A. & Gascon, Charles & Kluender, William & Walstrum, Thomas, 2021. "Predicting benchmarked US state employment data in real time," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1261-1275.
    16. Blasques, F. & Francq, Christian & Laurent, Sébastien, 2024. "Autoregressive conditional betas," Journal of Econometrics, Elsevier, vol. 238(2).
    17. Alejandro Rodriguez & Esther Ruiz, 2009. "Bootstrap prediction intervals in state–space models," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 167-178, March.
    18. Parrini, Alessandro, 2013. "Importance Sampling for Portfolio Credit Risk in Factor Copula Models," MPRA Paper 103745, University Library of Munich, Germany.
    19. Jean-Luc Gaffard, 2014. "Crise de la théorie et crise de la politique économique. Des modèles d'équilibre général stochastique aux modèles de dynamique hors de l'équilibre," Revue économique, Presses de Sciences-Po, vol. 65(1), pages 71-96.
    20. Bowen Fu & Mengheng Li & Qazi Haque, 2025. "Exchange Rates, Uncovered Interest Parity, and Time‐Varying Fama Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(3), pages 310-324, April.
    21. Salman Huseynov, 2021. "Long and short memory in dynamic term structure models," CREATES Research Papers 2021-15, Department of Economics and Business Economics, Aarhus University.
    22. Bógalo, Juan & Poncela, Pilar & Senra, Eva, 2017. "Automatic Signal Extraction for Stationary and Non-Stationary Time Series by Circulant SSA," MPRA Paper 76023, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3560-:d:1695845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.