Experimental Validation and Optimization of a Hydrogen–Gasoline Dual-Fuel Combustion Model in a Spark Ignition Engine with a Moderate Hydrogen Ratio
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wenzhi Gao & Zhen Fu & Yong Li & Yuhuai Li & Jiahua Zou, 2022. "Progress of Performance, Emission, and Technical Measures of Hydrogen Fuel Internal-Combustion Engines," Energies, MDPI, vol. 15(19), pages 1-26, October.
- Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
- Oleksandra Shepel & Jonas Matijošius & Alfredas Rimkus & Kamil Duda & Maciej Mikulski, 2021. "Research of Parameters of a Compression Ignition Engine Using Various Fuel Mixtures of Hydrotreated Vegetable Oil (HVO) and Fatty Acid Esters (FAE)," Energies, MDPI, vol. 14(11), pages 1-18, May.
- Chintala, Venkateswarlu & Subramanian, K.A., 2017. "A comprehensive review on utilization of hydrogen in a compression ignition engine under dual fuel mode," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 472-491.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
- Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of the hydrogen as main fuel on the performance of a modified compression ignition engine with water injection," Energy, Elsevier, vol. 173(C), pages 911-925.
- Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Attila Kiss & Bálint Szabó & Krisztián Kun & Zoltán Weltsch, 2024. "Prediction of Efficiency, Performance, and Emissions Based on a Validated Simulation Model in Hydrogen–Gasoline Dual-Fuel Internal Combustion Engines," Energies, MDPI, vol. 17(22), pages 1-26, November.
- Zhou, Feng & Wu, Chenghao & Fu, Jianqin & Liu, Jingping & Duan, Xiongbo & Sun, Zhiqiang, 2025. "Abnormal combustion and NOx emissions control strategies of hydrogen internal combustion engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
- Sharma, Prabhakar & Bora, Bhaskor J., 2023. "Modeling and optimization of a CI engine running on producer gas fortified with oxyhydrogen," Energy, Elsevier, vol. 270(C).
- Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
- Vladimir Anatolyevich Markov & Bowen Sa & Sergey Nikolaevich Devyanin & Anatoly Anatolyevich Zherdev & Pablo Ramon Vallejo Maldonado & Sergey Anatolyevich Zykov & Aleksandr Dmitrievich Denisov & Hewag, 2021. "Investigation of the Performances of a Diesel Engine Operating on Blended and Emulsified Biofuels from Rapeseed Oil," Energies, MDPI, vol. 14(20), pages 1-28, October.
- Grzegorz Mordarski & Konrad Skowron & Dorota Duraczyńska & Anna Drabczyk & Robert P. Socha, 2025. "Development of a Multi-Bed Catalytic Heat Generator Utilizing a Palladium-Based Hydrogen Combustion System," Energies, MDPI, vol. 18(6), pages 1-13, March.
- Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
- Serrano, J. & Jiménez-Espadafor, F.J. & López, A., 2019. "Analysis of the effect of different hydrogen/diesel ratios on the performance and emissions of a modified compression ignition engine under dual-fuel mode with water injection. Hydrogen-diesel dual-fu," Energy, Elsevier, vol. 172(C), pages 702-711.
- Oleksandr Osetrov & Rainer Haas, 2025. "Modeling Homogeneous, Stratified, and Diffusion Combustion in Hydrogen SI Engines Using the Wiebe Approach," Energies, MDPI, vol. 18(12), pages 1-22, June.
- Antonio Caricato & Antonio Paolo Carlucci & Magda Elvira Cassone Potenza & Domenico Laforgia & Marco Torresi & Luciano Strafella, 2023. "Autoignition Characterization of Hydrogen Directly Injected into a Constant-Volume Combustion Chamber through a Heavy-Duty Injector," Energies, MDPI, vol. 16(19), pages 1-14, September.
- Jarosław Wątróbski & Krzysztof Małecki & Kinga Kijewska & Stanisław Iwan & Artur Karczmarczyk & Russell G. Thompson, 2017. "Multi-Criteria Analysis of Electric Vans for City Logistics," Sustainability, MDPI, vol. 9(8), pages 1-34, August.
- Shi, Cheng & Ji, Changwei & Ge, Yunshan & Wang, Shuofeng & Yang, Jinxin & Wang, Huaiyu, 2021. "Effects of split direct-injected hydrogen strategies on combustion and emissions performance of a small-scale rotary engine," Energy, Elsevier, vol. 215(PA).
- Akcay, Mehmet & Yilmaz, Ilker Turgut & Feyzioglu, Ahmet, 2020. "Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends," Energy, Elsevier, vol. 212(C).
- Zbigniew Stępień, 2021. "A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-26, October.
- Sharma, Priybrat & Dhar, Atul, 2019. "Effect of hydrogen fumigation on combustion stability and unregulated emissions in a diesel fuelled compression ignition engine," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Inês Rolo & Vítor A. F. Costa & Francisco P. Brito, 2023. "Hydrogen-Based Energy Systems: Current Technology Development Status, Opportunities and Challenges," Energies, MDPI, vol. 17(1), pages 1-74, December.
- Li, Guoxing & Niu, Mingbo & Jian, Jie & Lu, Youjun, 2025. "Recent progress and prospects of hydrogen combustion chemistry in the gas phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3501-:d:1693408. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.