IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3498-d1693335.html
   My bibliography  Save this article

Optimizing Thermal Comfort with Adaptive Behaviours in South Australian Residential Buildings

Author

Listed:
  • Szymon Firląg

    (Wydział Inżynierii Lądowej, Politechnika Warszawska, Al. Armii Ludowej 16, 00-637 Warszawa, Poland)

  • Artur Miszczuk

    (Wydział Inżynierii Lądowej, Politechnika Warszawska, Al. Armii Ludowej 16, 00-637 Warszawa, Poland)

Abstract

This study focuses on thermal comfort in residential buildings within the Iron Triangle area of South Australia, examining how indoor conditions influence residents’ comfort and adaptive behaviours. Conducted from June 2023 to February 2024 across 30 homes in Port Pirie, Port Augusta, and Whyalla, the research gathered data from 38 residents, who reported indoor comfort levels in living rooms and bedrooms. A total of 3540 responses were obtained. At the same time, the measurement of indoor conditions in the buildings was performed using a small HOBO MX1104 device. Using the Mean Thermal Sensation Vote (MTSV) concept, it was possible to determine the neutral operative temperature and temperature ranges for thermal comfort categories. According to the defined linear regression formula, the neutral temperature was 23.9 °C. In living rooms, it was slightly lower, at 23.7 °C, and in bedrooms, slightly higher, at 24.4 °C. For comparison, the neutral temperature was calculated based on the average Predicted Mean Vote (MPMV) and equal to 24.3 °C. Comparison of the regression curves showed that in terms of slope, the MPMV curve is steeper (slope 0.282) than the MTSV curve (slope 0.1726), and lies above it. Regarding the residents’ behaviour, a strong correlation was found between the operative temperature T o and the degree of clothing I cl in living rooms. Use of ceiling fans was also studied. A clear trend was also observed regarding window and door opening. The findings of the research can be used to inform the design and operation of residential buildings with a view to enhancing thermal comfort and energy efficiency.

Suggested Citation

  • Szymon Firląg & Artur Miszczuk, 2025. "Optimizing Thermal Comfort with Adaptive Behaviours in South Australian Residential Buildings," Energies, MDPI, vol. 18(13), pages 1-26, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3498-:d:1693335
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Indraganti, Madhavi, 2010. "Thermal comfort in naturally ventilated apartments in summer: Findings from a field study in Hyderabad, India," Applied Energy, Elsevier, vol. 87(3), pages 866-883, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun, Geun Young & Steemers, Koen, 2011. "Behavioural, physical and socio-economic factors in household cooling energy consumption," Applied Energy, Elsevier, vol. 88(6), pages 2191-2200, June.
    2. Nematchoua, Modeste Kameni & Tchinda, René & Orosa, José A., 2014. "Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: A questionnaire-based statistical study," Applied Energy, Elsevier, vol. 114(C), pages 687-699.
    3. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Simulation of potential standalone liquid desiccant cooling cycles," Energy, Elsevier, vol. 81(C), pages 652-661.
    4. Ning, Haoran & Wang, Zhaojun & Ji, Yuchen, 2016. "Thermal history and adaptation: Does a long-term indoor thermal exposure impact human thermal adaptability?," Applied Energy, Elsevier, vol. 183(C), pages 22-30.
    5. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    6. Zhang, Sheng & Lin, Zhang, 2020. "Standard effective temperature based adaptive-rational thermal comfort model," Applied Energy, Elsevier, vol. 264(C).
    7. Zhao, Xi & Nie, Ping & Zhu, Jiayin & Tong, Liping & Liu, Yingfang, 2020. "Evaluation of thermal environments for cliff-side cave dwellings in cold region of China," Renewable Energy, Elsevier, vol. 158(C), pages 154-166.
    8. Singh, Manoj Kumar & Mahapatra, Sadhan & Atreya, S.K., 2011. "Adaptive thermal comfort model for different climatic zones of North-East India," Applied Energy, Elsevier, vol. 88(7), pages 2420-2428, July.
    9. Yang, Liu & Yan, Haiyan & Lam, Joseph C., 2014. "Thermal comfort and building energy consumption implications – A review," Applied Energy, Elsevier, vol. 115(C), pages 164-173.
    10. Buratti, C. & Ricciardi, P. & Vergoni, M., 2013. "HVAC systems testing and check: A simplified model to predict thermal comfort conditions in moderate environments," Applied Energy, Elsevier, vol. 104(C), pages 117-127.
    11. Yin, Peng & Xie, Jingchao & Ji, Ying & Liu, Jiaping & Hou, Qixian & Zhao, Shanshan & Jing, Pengfei, 2023. "Winter indoor thermal environment and heating demand of low-quality centrally heated houses in cold climates," Applied Energy, Elsevier, vol. 331(C).
    12. Nutkiewicz, Alex & Jain, Rishee K. & Bardhan, Ronita, 2018. "Energy modeling of urban informal settlement redevelopment: Exploring design parameters for optimal thermal comfort in Dharavi, Mumbai, India," Applied Energy, Elsevier, vol. 231(C), pages 433-445.
    13. Barun Mukhopadhyay & Charles A. Weitz, 2022. "Heat Exposure, Heat-Related Symptoms and Coping Strategies among Elderly Residents of Urban Slums and Rural Vilages in West Bengal, India," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
    14. Nutkiewicz, Alex & Mastrucci, Alessio & Rao, Narasimha D. & Jain, Rishee K., 2022. "Cool roofs can mitigate cooling energy demand for informal settlement dwellers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Indraganti, Madhavi, 2011. "Thermal comfort in apartments in India: Adaptive use of environmental controls and hindrances," Renewable Energy, Elsevier, vol. 36(4), pages 1182-1189.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3498-:d:1693335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.