IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3343-d1687743.html
   My bibliography  Save this article

A Real-Time Investigation of an Enhanced Variable Step PO MPPT Controller for Photovoltaic Systems Using dSPACE 1104 Board

Author

Listed:
  • Abdelkhalek Chellakhi

    (Laboratory of Electronics, Signals, Systems, and Informatics (LESSI), Department of Physics, Faculty of Sciences, Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez 30003, Morocco)

  • Said El Beid

    (Contrôle et Informatique pour les Systèmes Intelligents et l’Énergie Verte Team, Cadi Ayyad University, Marrakech 40160, Morocco)

Abstract

This paper aims to maximize the performance of photovoltaic generators under varying atmospheric conditions by employing an improved variable-step current perturbation Perturb and Observe (IVSCP-PO) MPPT controller. The proposed approach overcomes the limitations of traditional controllers and significantly enhances tracking efficiency. The IVSCP-PO controller locates the maximum power point (MPP) using current perturbation instead of voltage perturbation and employs a variable step iteration based on input variables such as power, voltage, and current for better adjustment of the boost converter’s duty ratio. Comprehensive simulations demonstrate the tracking effectiveness of the IVSCP-PO approach under varied and severe temperature and solar intensity conditions. The results indicate that the IVSCP-PO controller outperforms traditional and recently published methods by avoiding drift and oscillation and minimizing power loss. This translates to maximized static and dynamic tracking efficiencies, reaching 99.99% and 99.98%, respectively. Additionally, the IVSCP-PO controller boasts a record-breaking average tracking time of just 0.002 s, a substantial improvement over traditional and improved PO methods ranging from 0.036 to 0.6 s. To further validate these results, experiments were conducted using the dSPACE 1104 board, demonstrating the superior accuracy and effectiveness of the approach and providing a promising solution to optimize the performance of photovoltaic panels.

Suggested Citation

  • Abdelkhalek Chellakhi & Said El Beid, 2025. "A Real-Time Investigation of an Enhanced Variable Step PO MPPT Controller for Photovoltaic Systems Using dSPACE 1104 Board," Energies, MDPI, vol. 18(13), pages 1-23, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3343-:d:1687743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Papul Changmai & Sunil Deka & Shashank Kumar & Thanikanti Sudhakar Babu & Belqasem Aljafari & Benedetto Nastasi, 2022. "A Critical Review on the Estimation Techniques of the Solar PV Cell’s Unknown Parameters," Energies, MDPI, vol. 15(19), pages 1-20, September.
    2. Huda, Adri & Kurniawan, Ian & Purba, Khairul Fahmi & Ichwani, Reisya & Aryansyah, & Fionasari, Richa, 2024. "Techno-economic assessment of residential and farm-based photovoltaic systems," Renewable Energy, Elsevier, vol. 222(C).
    3. Rui-Yun Hsu & Yeong-Lin Lai & Yung-Hua Chou & Wei-Jhe Syu, 2024. "Improving Carrier Transport Behavior in a Bilayer ETL for Enhanced Efficiency of Perovskite Solar Cells: An Investigation," Energies, MDPI, vol. 17(4), pages 1-13, February.
    4. Musong L. Katche & Augustine B. Makokha & Siagi O. Zachary & Muyiwa S. Adaramola, 2023. "A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems," Energies, MDPI, vol. 16(5), pages 1-23, February.
    5. Maria I. S. Guerra & Fábio M. Ugulino de Araújo & Mahmoud Dhimish & Romênia G. Vieira, 2021. "Assessing Maximum Power Point Tracking Intelligent Techniques on a PV System with a Buck–Boost Converter," Energies, MDPI, vol. 14(22), pages 1-21, November.
    6. Hsen Abidi & Lilia Sidhom & Ines Chihi, 2023. "Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques," Energies, MDPI, vol. 16(8), pages 1-45, April.
    7. Adel O. Baatiah & Ali M. Eltamaly & Majed A. Alotaibi, 2023. "Improving Photovoltaic MPPT Performance through PSO Dynamic Swarm Size Reduction," Energies, MDPI, vol. 16(18), pages 1-15, September.
    8. Kuei-Hsiang Chao & Muhammad Nursyam Rizal, 2021. "A Hybrid MPPT Controller Based on the Genetic Algorithm and Ant Colony Optimization for Photovoltaic Systems under Partially Shaded Conditions," Energies, MDPI, vol. 14(10), pages 1-17, May.
    9. Rui Castro & Miguel Silva, 2021. "Experimental and Theoretical Validation of One Diode and Three Parameters–Based PV Models," Energies, MDPI, vol. 14(8), pages 1-25, April.
    10. Fatemeh Jamshidi & Mohammad Reza Salehizadeh & Reza Yazdani & Brian Azzopardi & Vibhu Jately, 2023. "An Improved Sliding Mode Controller for MPP Tracking of Photovoltaics," Energies, MDPI, vol. 16(5), pages 1-20, March.
    11. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salah Mahdi Thajeel & Doğu Çağdaş Atilla, 2025. "Reinforcement Neural Network-Based Grid-Integrated PV Control and Battery Management System," Energies, MDPI, vol. 18(3), pages 1-20, January.
    2. Boyan Huang & Kai Song & Shulin Jiang & Zhenqing Zhao & Zhiqiang Zhang & Cong Li & Jiawen Sun, 2024. "A Robust Salp Swarm Algorithm for Photovoltaic Maximum Power Point Tracking Under Partial Shading Conditions," Mathematics, MDPI, vol. 12(24), pages 1-17, December.
    3. Arsad, A.Z. & Zuhdi, A.W. Mahmood & Azhar, A.D. & Chau, C.F. & Ghazali, A., 2025. "Advancements in maximum power point tracking for solar charge controllers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
    4. Mingjun He & Ke Zhou & Yutao Xu & Jinsong Yu & Yangquan Qu & Xiankui Wen, 2025. "An Improved Maximum Power Point Tracking Control Scheme for Photovoltaic Systems: Integrating Sparrow Search Algorithm-Optimized Support Vector Regression and Optimal Regulation for Enhancing Precisio," Energies, MDPI, vol. 18(12), pages 1-21, June.
    5. Chian-Song Chiu & Yu-Ting Chen, 2025. "MPPT-Based Chaotic ABC Algorithm for a Photovoltaic Power System Under Partial Shading Conditions," Energies, MDPI, vol. 18(7), pages 1-17, March.
    6. Rausser, Gordon & Chebotareva, Galina & Strielkowski, Wadim & Smutka, Luboš, 2025. "Would Russian solar energy projects be possible without state support?," Renewable Energy, Elsevier, vol. 241(C).
    7. João Paulo N. Torres & Ricardo A. Marques Lameirinhas & Catarina Pinho Correia Valério Bernardo & Sofia Lima Martins & Pedro Mendonça dos Santos & Helena Isabel Veiga & Maria João Marques Martins & Pa, 2023. "Analysis of Different Third-Generation Solar Cells Using the Discrete Electrical Model d1MxP," Energies, MDPI, vol. 16(7), pages 1-12, April.
    8. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    9. Diego Vargas & Leonardo Ortega & Julio C. Caiza & Danny S. Guamán, 2025. "A Systematic Mapping Study on Automatic Control Systems of Multi-Port dc/dc Power Converters," Energies, MDPI, vol. 18(13), pages 1-48, June.
    10. Mahmoud Dhimish & Pavlos I. Lazaridis, 2022. "Approximating Shading Ratio Using the Total-Sky Imaging System: An Application for Photovoltaic Systems," Energies, MDPI, vol. 15(21), pages 1-16, November.
    11. Antonio Lecuona-Neumann & José I. Nogueira-Goriba & Antonio Famiglietti & María del Carmen Rodríguez-Hidalgo & Jean Boubour, 2024. "Solar Photovoltaic Cooker with No Electronics or Battery," Energies, MDPI, vol. 17(5), pages 1-21, March.
    12. Morteza Ahmadi & Masoud Abrari & Majid Ghanaatshoar & Ali Khalafi, 2024. "A novel algorithm for maximum power point tracking using computer vision (CVMPPT)," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-16, April.
    13. Reguieg, Zakaria & Bouyakoub, Ismail & Mehedi, Fayçal, 2025. "Harmonic mitigation in grid-integrated renewable energy systems with nonlinear loads," Energy, Elsevier, vol. 324(C).
    14. Pingye Wan & Miao Huang & Jinshan Mou & Lili Tao & Shuping Zhang & Zhihua Hu, 2025. "Voltage Unbalance Control Strategy for Local Shading Photovoltaic Grid-Connected System," Energies, MDPI, vol. 18(3), pages 1-24, January.
    15. Farzaneh Bagheri & Jakson Bonaldo & Naki Guler & Marco Rivera & Patrick Wheeler & Rogerio Lima, 2025. "Enhanced Sliding Mode Control for Dual MPPT Systems Integrated with Three-Level T-Type PV Inverters," Energies, MDPI, vol. 18(13), pages 1-23, June.
    16. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    17. Ali M. Eltamaly & Zeyad A. Almutairi, 2025. "Synergistic Coordination Between PWM Inverters and DC-DC Converters for Power Quality Improvement of Three-Phase Grid-Connected PV Systems," Sustainability, MDPI, vol. 17(8), pages 1-20, April.
    18. Carlos Barrera-Singaña & María Paz Comech & Hugo Arcos, 2025. "A Comprehensive Review on the Integration of Renewable Energy Through Advanced Planning and Optimization Techniques," Energies, MDPI, vol. 18(11), pages 1-23, June.
    19. Zulfiqar Ali & Syed Zagam Abbas & Anzar Mahmood & Syed Wajahat Ali & Syed Bilal Javed & Chun-Lien Su, 2023. "A Study of a Generalized Photovoltaic System with MPPT Using Perturb and Observer Algorithms under Varying Conditions," Energies, MDPI, vol. 16(9), pages 1-21, April.
    20. Muhammed Y. Worku & Mohamed A. Hassan & Luqman S. Maraaba & Md Shafiullah & Mohamed R. Elkadeem & Md Ismail Hossain & Mohamed A. Abido, 2023. "A Comprehensive Review of Recent Maximum Power Point Tracking Techniques for Photovoltaic Systems under Partial Shading," Sustainability, MDPI, vol. 15(14), pages 1-28, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3343-:d:1687743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.