IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i13p3282-d1685550.html
   My bibliography  Save this article

A Review of Recent Research on Flow and Heat Transfer Analysis in Additively Manufactured Transpiration Cooling for Gas Turbines

Author

Listed:
  • Kirttayoth Yeranee

    (Institute of Turbomachinery, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)

  • Yu Rao

    (Institute of Turbomachinery, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
    Shenzhen Research Institute, Shanghai Jiao Tong University, Shenzhen 518000, China)

Abstract

Advanced gas turbine cooling technologies are required to bridge the gap between turbine inlet temperatures and component thermal limits. Transpiration cooling has emerged as a promising method, leveraging porous structures to enhance cooling effectiveness. Recent advancements in additive manufacturing (AM) enable precise fabrication of complex transpiration cooling architectures, such as triply periodic minimal surface (TPMS) and biomimetic designs. This review analyzes AM-enabled transpiration cooling for gas turbines, elucidating key parameters, heat transfer mechanisms, and flow characteristics of AM-fabricated designs through experimental and numerical studies. Previous research has concluded that well-designed transpiration cooling achieves cooling effectiveness up to five times higher than the traditional film cooling methods, minimizes jet lift-off, improves temperature uniformity, and reduces coolant requirements. Optimized coolant controls, graded porosity designs, complex topologies, and hybrid cooling architectures further enhance the flow uniformity and cooling effectiveness in AM transpiration cooling. However, challenges remain, including 4–77% porosity shrinkage in perforated transpiration cooling for 0.5–0.06 mm holes, 15% permeability loss from defects, and 10% strength reduction in AM models. Emerging solutions include experimental validations using advanced diagnostics, high-fidelity multiphysics simulations, AI-driven and topology optimizations, and novel AM techniques, which aim at revolutionizing transpiration cooling for next-generation gas turbines operating under extreme conditions.

Suggested Citation

  • Kirttayoth Yeranee & Yu Rao, 2025. "A Review of Recent Research on Flow and Heat Transfer Analysis in Additively Manufactured Transpiration Cooling for Gas Turbines," Energies, MDPI, vol. 18(13), pages 1-42, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3282-:d:1685550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/13/3282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/13/3282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sandip Dutta & Inderjot Kaur & Prashant Singh, 2022. "Review of Film Cooling in Gas Turbines with an Emphasis on Additive Manufacturing-Based Design Evolutions," Energies, MDPI, vol. 15(19), pages 1-35, September.
    2. Wen Wang & Yan Yan & Yeqi Zhou & Jiahuan Cui, 2022. "Review of Advanced Effusive Cooling for Gas Turbine Blades," Energies, MDPI, vol. 15(22), pages 1-28, November.
    3. Joon Ahn, 2022. "Large Eddy Simulation of Film Cooling: A Review," Energies, MDPI, vol. 15(23), pages 1-21, November.
    4. Kirttayoth Yeranee & Yu Rao, 2022. "A Review of Recent Investigations on Flow and Heat Transfer Enhancement in Cooling Channels Embedded with Triply Periodic Minimal Surfaces (TPMS)," Energies, MDPI, vol. 15(23), pages 1-29, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Xia & Xiaosheng Chen & Christopher D. Ellis, 2024. "Modelling and Simulation of Effusion Cooling—A Review of Recent Progress," Energies, MDPI, vol. 17(17), pages 1-30, September.
    2. Joon Ahn, 2023. "Large Eddy Simulation of Flow and Heat Transfer in a Ribbed Channel for the Internal Cooling Passage of a Gas Turbine Blade: A Review," Energies, MDPI, vol. 16(9), pages 1-20, April.
    3. Joon Ahn, 2022. "Large Eddy Simulation of Film Cooling: A Review," Energies, MDPI, vol. 15(23), pages 1-21, November.
    4. Jie Zhang & Xiaoqing Yang, 2025. "Numerical Simulation of Convective Heat Transfer in Gyroid, Diamond, and Primitive Microstructures Using Water as the Working Fluid," Energies, MDPI, vol. 18(5), pages 1-27, March.
    5. Wang, Jinghan & Chen, Kai & Zeng, Min & Ma, Ting & Wang, Qiuwang & Cheng, Zhilong, 2023. "Assessment of flow and heat transfer of triply periodic minimal surface based heat exchangers," Energy, Elsevier, vol. 282(C).
    6. Kenichiro Takeishi, 2022. "Evolution of Turbine Cooled Vanes and Blades Applied for Large Industrial Gas Turbines and Its Trend toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-35, November.
    7. Hu, Kaibin & Wang, Xiaobo & Zhong, Shengquan & Lu, Cheng & Yu, Bocheng & Yang, Li & Rao, Yu, 2024. "Optimization of turbine blade trailing edge cooling using self-organized geometries and multi-objective approaches," Energy, Elsevier, vol. 289(C).
    8. Chen, Zhimin & Chen, Xuejiao & Yang, XuFei & Yu, Bo & Wang, Bohong & Zhu, Jianqin & Chen, Yujie & Cai, Weihua, 2024. "Numerical study on cooling characteristics of turbine blade based on laminated cooling configuration with clapboards," Energy, Elsevier, vol. 299(C).
    9. Longbing Hu & Qiuru Zuo & Yu Rao, 2025. "Heat Transfer Enhancement in Turbine Blade Internal Cooling Channels with Hybrid Pin-Fins and Micro V-Ribs Turbulators," Energies, MDPI, vol. 18(13), pages 1-16, June.
    10. Liang Xu & Zineng Sun & Qicheng Ruan & Lei Xi & Jianmin Gao & Yunlong Li, 2023. "Development Trend of Cooling Technology for Turbine Blades at Super-High Temperature of above 2000 K," Energies, MDPI, vol. 16(2), pages 1-19, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3282-:d:1685550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.