Author
Listed:
- Martin Beer
(Institute of Earth Sources, Faculty of Mining, Ecology, Process Technologies and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)
- Radim Rybár
(Institute of Earth Sources, Faculty of Mining, Ecology, Process Technologies and Geotechnology, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia)
Abstract
This study focuses on the numerical analysis of the impact of geometric modifications of sheet-gyroid structures on heat transfer in thermal energy storage systems utilizing sodium acetate trihydrate as a phase change material. The aim was to enhance the thermal conductivity of SAT, which is inherently low in the solid phase, by embedding a thermally conductive metallic structure made of aluminum alloy 6061. The simulations compared four gyroid configurations with different degrees of torsional deformation (0°, 90°, 180°, and 360°) alongside a reference model without any structure. Using numerical analysis, the study evaluated the time required to heat the entire volume of SAT above its phase transition temperature (58 °C) as well as the spatial distribution of the temperature field. The results demonstrate that all gyroid configurations significantly reduced the charging time compared with the reference case, with the highest efficiency achieved by the 360° twisted structure. Temperature maps revealed a more uniform thermal distribution within the phase change material and a higher heat flux into the volume. These findings highlight the strong potential of TPMS-based structures for improving the performance of latent heat thermal energy storage systems.
Suggested Citation
Martin Beer & Radim Rybár, 2025.
"Enhancing Solar Thermal Energy Storage via Torsionally Modified TPMS Structures Embedded in Sodium Acetate Trihydrate,"
Energies, MDPI, vol. 18(13), pages 1-17, June.
Handle:
RePEc:gam:jeners:v:18:y:2025:i:13:p:3234-:d:1683622
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3234-:d:1683622. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.