IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i11p2932-d1670989.html
   My bibliography  Save this article

Impacts of Bipolar Impulse Parameters on the PDIV of Random-Wound Inverted-Fed Motor Insulation

Author

Listed:
  • Junsheng Chen

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

  • Peng Wang

    (College of Electrical Engineering, Sichuan University, Chengdu 610065, China)

Abstract

The detection of Partial Discharge Inception Voltage (PDIV) is vital for evaluating the insulation performance of random-wound inverter-fed motor stators. However, existing research on the impact of impulse parameters on PDIV patterns and their underlying mechanisms is limited, leading to inadequate guidelines for choosing suitable impulse parameters during PDIV tests of stator insulation under impulsive conditions. This lack of understanding significantly affects the precision of the accuracy of insulation test results for inverter-fed motors. To bridge this gap, this study systematically investigated the influence of key impulse parameters, such as pulse width, dead time, and impulse frequency, on the PDIV test outcomes in enameled wire samples (enameled twisted pairs and pig-tail wires) and random-wound inverter-fed motor stators. A differential bipolar repetitive impulse voltage and a sinusoidal voltage were applied to simulate the pulse-width modulation electrical stress typically experienced by these motors. Results reveal a negative correlation between PDIV test results and pulse width, a positive correlation with dead time, and a weak correlation with impulse frequency. Furthermore, the potential fundamental mechanisms are proposed for the influence of impulse voltage parameters on PDIV characteristics by analyzing the electric field distribution and discharge processes within insulating materials when subjected to impulsive voltages. Based on the experimental conclusion, this study proposes targeted recommendations for revising the current IEC testing standards. These improvements are anticipated to refine stator insulation testing methodologies for inverter-fed motors, ultimately contributing to enhanced insulation reliability in such electric motors.

Suggested Citation

  • Junsheng Chen & Peng Wang, 2025. "Impacts of Bipolar Impulse Parameters on the PDIV of Random-Wound Inverted-Fed Motor Insulation," Energies, MDPI, vol. 18(11), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2932-:d:1670989
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/11/2932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/11/2932/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2932-:d:1670989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.